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1 Introduction

Quantum field theory (QFT) as a mathematically consistent theory
was formulated in the framework of the axiomatic approach in the
works of Wightman, Jost, Bogoliubov, Haag and others.

Noncommutative quantum field theory (NC QFT) being one
of the generalizations of standard QFT is intensively developed
during the last years. The idea of such a generalization of QFT
ascends still to Heisenberg. It was actively developed after Snyder’s
work.

The present development in this direction is connected with
the construction of noncommutative geometry and new physical
arguments in favour of such a generalization of QFT. Essential
interest in NC QFT is also connected with the fact that in some
cases it is obtained as a low-energy limit from the strings theory.
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The simplest and at the same time most studied version of
noncommutative theory is based on the following Heisenberg-like
commutation relations between coordinates:

[x̂µ, x̂ν] = i θµν, (1)

where θµν is a constant antisymmetric matrix.
NC QFT can be formulated also in commutative space by replacing

the usual product of operators by the star (Moyal-type) product:

ϕ(x) ⋆ ϕ(x) = exp

(

i

2
θµν ∂

∂xµ

∂

∂yν

)

ϕ(x)ϕ(y)|x=y. (2)

This product of operators can be extended to the corresponding
product of operators in different points:

ϕ(x1)⋆· · ·⋆ϕ(xn) =
∏

a<b≤n

exp

(

i

2
θµν ∂

∂x
µ
a

∂

∂xν
b

)

ϕ(x1) . . . ϕ(xn).
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Let us stress that actually the field operator given at a point
cannot be a well-defined operator. Well-defined operators are the
smoothed operators:

ϕf ≡

∫

ϕ (x) f (x) d x, (3)

where f (x) is a test function. In QFT the standard assumption
is that f (x) are test functions of tempered distributions.

Wightman approach in NC QFT was formulated in
L. Álvarez-Gaumé and M. A. Vázquez-Mozo, Nucl. Phys.

B, 668, 293, (2003);
M. Chaichian, M. N. Mnatsakanova, K. Nishijima, A.

Tureanu and Yu. S. Vernov, Towards an axiomatic formulation

of noncommutative quantum field theory, hep-th/0402212;
Yu.S. Vernov, M.N. Mnatsakanova, Theor. Math.Phys.,

142, 337 (2005).
4



Formally the Wightman functions can be written down as follows:

W⋆ (x1, x2, . . . , xn) = 〈Ψ0, ϕ (x1) ⋆ · · · ⋆ ϕ (xn)Ψ0〉, (4)

where Ψ0 is a vacuum vector. The formal expression (4) actually
means that the scalar product of the vectors Φk = ϕfk

· · · ϕf1
Ψ0

and Ψn = ϕfk+1
· · · ϕfn

Ψ0 is the following:

〈Φk, Ψn 〉 =
∫

W (x1, . . . , xn) f1 (x1) ⋆· · ·⋆fk (xk)⋆fk+1 (xk+1)⋆· · ·⋆ fn (xn)

d x1 . . . d xn, W (x1, . . . , xn) = 〈Ψ0, ϕ(x1) · · ·ϕ(xn)Ψ0〉. (5)

This choice of the product of operators ϕf1
and ϕf2

reflects the
natural physical assumption, that noncommutativity should change
the product of operators not only in coinciding points, but also in
different ones.
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In this report we give a rigorous definition of quantum field
operator in NC QFT. For this purpose we have to define the class
of test functions, for which the ⋆-product is well defined.

We extend the axiomatic construction of field operators on NC
QFT and construct the space on the dense domain of which quantum
field operator is well defined. We shall prove that the ⋆-multiplication
is well defined for the functions fi (xi), if

fi (xi) ∈ Sβ, β < 1/2. (6)

Sβ is a Gel’fand-Shilov space. The case β = 1/2 is not excluded,
but requires the additional assumption.

We show that after the ⋆-multiplication we obtain functions
which belong to the space Sβ with the same β as fi (xi).
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2 Definition of Quantum Field Operators in NC QFT

Let us define rigorously quantum field operator ϕf . To this end we
construct a closed and nondegenerate space J such that operators
ϕf be well defined on dense domain of J .

The difference of noncommutative case from commutative one
is that action of the operator ϕf is defined by the ⋆-product.

Construction of space J we shall begin with introduction of set
M of breaking sequences of the following kind

g = {g0, g1, . . . gk}, (7)

where g0 ∈ IC, g1 = g1
1 (x1), x1 ∈ IR4,

gi = g1
i (x1) ⋆ · · · ⋆ gi

i (xi), xj ∈ IR4, 1 ≤ j ≤ i;

k depends on g.
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Let us recall that:

ϕ(x) ⋆ ϕ(y) = exp

(

i

2
θµν ∂

∂xµ

∂

∂yν

)

ϕ(x)ϕ(y).

Addition and multiplication by complex numbers of the above
mentioned sequences are defined component by component, i.e.

{g0, g1, . . . gk} + {h0, h1, . . . hm} = {h0 + g0, h1 + g1, + . . .},

C g = {C g0, C g1, . . . C gk}.

The every possible finite sums of the sequences belonging M
form space J ′

0 on which action of the operator ϕf , f = f (x), x ∈

IR4 will be determined.
Certainly, to determine ⋆-product, functions gk should have

sufficient smoothness. We prove, that Moyal product is well defined,
if gk belongs to one of Gel’fand-Shilov spaces Sβ, β < 1/2.
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Moreover, f⋆gk ∈ Sβ with the same β, i.e. after star multiplication
the function belongs to the initial space.

The operator ϕf is defined as follows

ϕf g = {fg0, f ⋆ g1, . . . f ⋆ gk}, (8)

where f ⋆ gi = f (x) ⋆ g1
i (x1) ⋆ · · · ⋆ gi

i (xi).
As f ⋆ (gi + g̃i) = f ⋆ gi + f ⋆ g̃i, and any vector of space J ′

0
is the sum of the vectors belonging to set M , the operator ϕf is

determined on any vector of space J ′
0 and ϕfΦ ∈ J ′

0,∀ Φ ∈ J ′
0.

Scalar product of vectors in J ′
0 we shall define with the help of

Wightman functions W (x1, . . . , xn) ≡ 〈Ψ0, ϕ (x1) . . . ϕ (xn) Ψ0〉.
We shall consider firstly a chain of vectors: vacuum vector Ψ0 =
{1, 0, . . . 0}, Φ1 = ϕf1

Ψ0, . . . Φk = ϕfk
. . . ϕf1

Ψ0, fi = fi (xi), xi ∈

IR4. Evidently, Φk = {0, . . . fk ⋆ . . . ⋆ f1, 0 . . . 0} and

Ψn = ϕfk+1
. . . ϕfn

Ψ0 = {0, . . . fk+1 ⋆ . . . ⋆ fn, 0 . . . 0}.
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It is obvious, that J ′
0 is a span of the vectors of such type. Scalar

product of vectors Φk and Ψn is

〈Φk, Ψn 〉 = 〈Ψ0, ϕf̄1
. . . ϕf̄k

ϕfk+1
. . . ϕfn

Ψ0 〉 =
∫

d x1 . . . d xn W (x1, . . . , xn)·

f1 (x1) ⋆ · · · ⋆ fk (xk) ⋆ fk+1 (xk+1) ⋆ · · · ⋆ fn (xn). (9)

The adjoined operator ϕ∗
f is defined by the standard formula.

If operator ϕf is Hermitian then ϕ∗
f = ϕf̄ . Here we consider

only Hermitian (real) operators, but the construction can be easily
extended to complex fields.
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Let us point out that a condition

〈Φk, Ψn 〉 = 〈Ψn, Φk 〉 (10)

is fulfilled, if (as well as in commutative case),

W (x1, . . . , xn) = W (xn, . . . , x1). (11)

The required condition is satisfied, owing to antisymmetry of θ µν.
As any vector of space J ′

0 is a finite sum of the vectors belonging
to the set M , we can directly define scalar product of any vectors
of space J ′

0 .
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Let us stress that if the ⋆-product acts only in coinciding points
and is substituted by usual one in different points then given
construction can also be fulfilled, only in the different points we
have to put θij = 0. But in this case the function f (x, y) =
f (x)f (y), x 6= y, f (x, x) = f (x) ⋆ f (x) is not continuous when
x = y.

The definition of generalized functions on the space of test functions
which are not continuous meets serious difficulties. This point can
be considered as an additional argument in favor of use in NC
QFT the ⋆-product both in different and coinciding points.
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As well as in commutative case, we need to pass from J ′
0 to

nondegenerate and closed space J .
The space J ′

0 can contain isotropic, i.e. orthogonal to J ′
0 vectors

which, as is known, form subspace. Designating isotropic space as
J̃0 and passing to factor-space J0 = J ′

0/J̃0, we obtain nondegene-
rate space, i.e. a space which does not contain isotropic vectors.
For closure of space J0 we assume, as well as in commutative case,
that J0 is normalized space. If the metrics of J0 is positive, norm

Φ ≡ ‖Φ‖ can be defined by the formula ‖Φ‖ = (〈Φ, Φ〉)1/2.
J̄0 (a closure of J0) is carried out with the help of standard
procedure - closure to the introduced norm. This space, in turn,
can contain isotropic subspace J̃ .

Factor-space J = J̄0/J̃ , obviously, will be nondegenerate space.
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Thus, we constructed closed and nondegenerate space J such
that operators ϕf are obviously determined on dense domain J0.
Hence, every vector of J can be approximated with arbitrary
accuracy by the vectors of the type

ϕf1
· · · ϕfn

Ψ0, (12)

where Ψ0 is a vacuum vector. In other words the vacuum vector
Ψ0 is cyclic, i.e. the axiom of cyclicity of vacuum is fulfilled.
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Let us point out that in commutative case construction of space
J begins with introduction of sequences g determined by the
formula

g = {g0, g1, . . . gk}, (13)

in which, however, gi ≡ gi (x1, . . . xi) are smooth functions of
variables xj ∈ IR4. We shall note that in the commutative case,
starting with J ′

0, we shall come to the same space J . Really, as

space of functions of a type g1
i (x1) g2

i (x2) . . . gi
i (xi) is dense in

space of functions gi (x1, . . . xi), we can complete J ′
0 up to space

of the above mentioned sequences and then carry out the standard
construction of space J .
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3 Test Functions Space

Our aim is to determine the spaces in which the ⋆-multiplication is
well-defined. Evidently the space of tempered distributions cannot
be the space compatible with the ⋆-multiplication, as each function
of this space contains only a finite number of derivatives. Gel’fand
and Shilov proved that if f (x) ∈ Sβ (see ineq. (14)) then the
series of derivatives of infinite order can be well-defined in such
a space. Thus we assume that f (x) ∈ Sβ and prove that the
⋆-product is well-defined only if each fi belongs to the Gel’fand-
Shilov space Sβ, β < 1/2. The ⋆-product can be also well-defined
if β = 1/2, but only for functions which satisfy inequality (14)
with sufficiently small B.

16



Let us recall the definition and basic properties of Gel’fand-
Shilov spaces Sβ. In the case of one variable f (x), x ∈ IR1

belongs to the space Sβ, if the following condition is satisfied:
∣

∣

∣

∣

xk ∂ q f (x)

∂xq

∣

∣

∣

∣

≤ Ck B q q qβ, −∞ < x < ∞, k, q ∈ IN,

(14)
where the constants Ck and B depend on the function f (x).
Below we use the inequality (14) only at k = 0:
∣

∣

∣

∣

∂ q f (x)

∂xq

∣

∣

∣

∣

≤ C B q q qβ, −∞ < x < ∞, q ∈ IN. (15)
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In the case of a function of several variables, the latter inequality
(15) holds for any partial derivative:
∣

∣

∣

∣

∣

∂ q f (x1, . . . xk)

(∂xi)
q

∣

∣

∣

∣

∣

≤ C B q q qβ, −∞ < xi < ∞, q ∈ IN.

(16)
As our results do not depend on constant C, in what follows we
put C = 1.

We point out that if the ⋆-product is well-defined for

fi (xi) ⋆ fi+1 (xi+1),

it is also well-defined for product of arbitrary number of functions.
Let us study

f (x) ⋆ f (y) = exp

(

i

2
θµν ∂

∂xµ

∂

∂yν

)

f (x) f (y). (17)
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We have to find the conditions under which the series
∞
∑

n=0

1

n!

(

i

2
θµν ∂

∂xµ

∂

∂yν

)n

f (x) f (y) ≡

∞
∑

n=0

Dn

n!
(18)

converges. After simple calculations we come to the inequality:

|Dn| < (4 θ B2)
n

n2 nβ. (19)

Using this inequality and the fact that, according to the Stirling
formula, 1

n! <
(e
n

)n
, we come to the estimate
∣

∣

∣

∣

Dn

n!

∣

∣

∣

∣

< B̃n n−2 n γ, (20)

where B̃ = 4 e θ B2, γ = 1 − 2 β.
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For any B̃ the series
∞
∑

n=0

B̃n n−2 n γ (21)

converges if γ > 0, i.e. β < 1/2, and diverges if β > 1/2. If
β = 1/2 the series converges if B̃ < 1.

Thus we come to the conclusion that the series (18) for arbitrary
B and C is a convergent one if β < 1/2 and divergent if β > 1/2.
If β = 1/2 the series converges at sufficiently small B.

Similarly we can prove that the function f⋆ (x, y) ≡ f (x)⋆f (y)
belongs to the same Gel’fand-Shilov space Sβ, β < 1/2 as f (x).
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4 Conclusions

We have rigorously constructed field operators in NC

QFT and have proven that the space of test functions

for the Wightman distribution functions corresponding to

the NC QFT, in other words, the space of test functions

for which the star-product is well-defined, is one of the

Gel’fand-Shilov spaces Sβ with β < 1/2.
The existence and determination of the class of test functions

spaces is important for any rigorous treatment of the axiomatic
approach to NC QFT via NC Wightman functions and the deriva-
tion of rigorous results such as CPT and spin-statistics theorems.
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The carried out construction of the closed and nondege-

nerate space, such that operators ϕf are determined on its

dense domain, opens a way to derivation of the reconstruc-

tion theorem in noncommutative field theory, that we are

going to make.
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