Higher Spin Fields in Siegel Space,

Currents, Quantization and Theta Functions

O.A. Gelfond and M.A. Vasiliev

arxiv: 0801.2191 [hep-th]

Lebedev Institute, Moscow

Quarks 2008, Zagorskie Dali, May 24, 2008

Plan

• Introduction: 4d massless fields in ten dimensions

Unfolded equations and quantization

 Riemann theta functions as solutions of massless field equations

Conserved currents and fluxes in spinning directions

Conclusions

Introduction

$$X^{AB} = X^{BA} \ (A, B, \ldots = 1, \ldots M), \qquad d = 4 : M = 4$$
 Fronsdal 1985

Equations of Motion

MV 2001

KG-like

$$\left(\frac{\partial^2}{\partial X^{AB}\partial X^{CD}} - \frac{\partial^2}{\partial X^{AC}\partial X^{BD}}\right)b(X) = 0$$

Dirac-like

$$\frac{\partial}{\partial X^{AB}} f_C(X) - \frac{\partial}{\partial X^{AC}} f_B(X) = 0$$

Unfolded Equations

$$\left(\frac{\partial}{\partial X^{AB}} + \mu \frac{\partial^2}{\partial Y^A \partial Y^B}\right) C(Y|X) = 0$$

Dynamical fields

$$b(X) = C(0|X),$$
 $f_A(X) = \frac{\partial}{\partial Y^A} C(Y|X)|_{Y=0}.$

Auxiliary fields

$$C_{A_1...A_n}(X) = \frac{\partial^n}{\partial Y^{A_1} \dots \partial Y^{A_n}} C(Y|X)|_{Y=0} \quad n > 1.$$

HS symmetries

$$\delta C(Y|X) = \epsilon \exp j_A h^A \exp (j_A Y^A - \mu X^{AB} j_A j_B) C(Y^B + h^B - 2\mu X^{BC} j_C | X).$$

sp(8) symmetries

$$\begin{split} P_{AB}C(Y|X) &= \frac{\partial^2}{\partial h^A \partial h^B} \epsilon^{-1} \delta C(Y|X)|_{h=j=0} = -\frac{\partial}{\partial X^{AB}} C(Y|X), \\ L_A{}^BC(Y|X) &= \left(\frac{\partial^2}{\partial h^A \partial j_B} + \frac{M}{2} \delta_A{}^B\right) \epsilon^{-1} \delta C(Y|X)|_{h=j=0} = \\ & \left(Y^B \frac{\partial}{\partial Y^A} + 2X^{BC} \frac{\partial}{\partial X^{CA}} + \frac{M}{2} \delta_A{}^B\right) C(Y|X), \\ K^{AB}C(Y|X) &= \frac{\partial^2}{\partial j_A \partial j_B} \epsilon^{-1} \delta C(Y|X)|_{h^A=j_A=0} = \\ & (Y^B Y^A - 2Y^A X^{BC} \frac{\partial}{\partial Y^C} - 2Y^B X^{AC} \frac{\partial}{\partial Y^C} \\ & -2X^{AB} - 4X^{BC} X^{AD} \frac{\partial}{\partial X^{CD}}) C(Y|X). \end{split}$$

Quantization

General solutions of Equations of Motion

$$b(X) = \frac{1}{\pi^{\frac{M}{2}}} \int d^M \xi \, (b^+(\xi) \exp\{i\xi_A \xi_B X^{AB}\} + b^-(\xi) \exp\{-i\xi_A \xi_B X^{AB}\}),$$

$$f_A(X) = \frac{1}{\pi^{\frac{M}{2}}} \int d^M \xi \, \xi_A(f^+(\xi) \exp\{i\xi_A \xi_B X^{AB}\} + f^-(\xi) \exp\{-i\xi_A \xi_B X^A\}$$

For even M, $b^{\pm}(\xi)$ is even and $f^{\pm}(\xi)$ is odd

Definite Frequency Unfolded Equations

$$\left(\frac{\partial}{\partial X^{AB}} \pm i h \frac{\partial^2}{\partial Y^A \partial Y^B}\right) C^{\pm}(Y|X) = 0$$

distinguish between the positive—and negative—frequencies:

$$C^{\pm}(Y|X) = \frac{1}{\pi^{\frac{M}{2}}} \int d^M \xi \, c^{\pm}(\xi) \exp \pm i(h \, \xi_A \xi_B X^{AB} + Y^B \xi_B),$$

$$c^{-}(\xi) = \overline{c^{+}(\xi)}, \qquad C^{-}(Y|X) = \overline{C^{+}(Y|X)}, \qquad c^{\pm}(\xi) = b^{\pm}(\xi) + f^{\pm}(\xi)$$

$$[\hat{c}^{\pm}(\xi_1), \hat{c}^{\pm}(\xi_2)] = 0, \quad [\hat{c}^{-}(\xi_1), \hat{c}^{+}(\xi_2)] = \delta(\xi_1 - \xi_2).$$

Unfolding versus Quantization

Siegel Space

Complex coordinates

$$\mathcal{Z}^{AB} = X^{AB} + i \mathbf{X}^{AB} \equiv \Re \mathcal{Z}^{AB} + i \Im \mathcal{Z}^{AB}.$$

The real part of \mathcal{Z}^{AB} is X^{AB} ,

the imaginary part $\mathbf{X}^{AB} = \Im \mathcal{Z}^{AB}$ is positive definite:

Upper Siegel half-space \mathfrak{H}_M .

The variables $\mathcal{Y}^A = Y^A + i \mathbf{Y}^A$ extend Siegel space to Fock-Siegel space.

$$C^{+}(\mathcal{Y}|\mathcal{Z}) = \int d^{M}\xi \ c^{+}(\xi) \exp i(h\xi_{A}\xi_{B}\mathcal{Z}^{AB} + \xi_{A}\mathcal{Y}^{A})$$

is holomorphic in \mathcal{Z}^{AB} and \mathcal{Y}^A in the upper Fock-Siegel space $\mathfrak{H}_M imes \mathbb{R}^M$ for not too bad $c^+(\xi)$.

$$C^{-}(\overline{\mathcal{Y}}|\overline{\mathcal{Z}}) = \int d^{M}\xi \ c^{-}(\xi) \exp -i(h\xi_{A}\xi_{B}\overline{\mathcal{Z}}^{AB} + \xi_{A}\overline{\mathcal{Y}}^{A}).$$

is antiholomorphic in \mathcal{Z}^{AB} and \mathcal{Y}^{A}

$$\overline{C^{+}(\mathcal{Y}|\mathcal{Z})} = C^{-}(\overline{\mathcal{Y}}|\overline{\mathcal{Z}})$$

 $C^+(\mathcal{Y}|\mathcal{Z})$ and $C^-(\overline{\mathcal{Y}}|\overline{\mathcal{Z}})$ satisfy the

Definite Frequency Unfolded Equations

$$\left(\frac{\partial}{\partial \mathcal{Z}^{AB}} + i h \frac{\partial^2}{\partial \mathcal{Y}^A \partial \mathcal{Y}^B}\right) C^+(\mathcal{Y}|\mathcal{Z}) = 0$$

$$\left(\frac{\partial}{\partial \overline{Z}^{AB}} - i h \frac{\partial^2}{\partial \overline{\mathcal{Y}}^A \partial \overline{\mathcal{Y}}^B}\right) C^-(\overline{\mathcal{Y}}|\overline{\mathcal{Z}}) = 0,$$

that uplift the massless field equations for (negative)positive frequencies to the full Fock-Siegel space. The (anti)holomor properties reconstruct C^{\pm} in terms of their boundary values $C^{\pm}(Y|X)$ at $\mathcal{M}_M \times \mathbb{R}^M$.

Periodic solutions of HS equations

A positive-frequency solution of the Unfolded Equations periodic under

$$\mathcal{Y}^A \to \mathcal{Y}^A + n^A, \qquad n^A \in \mathbb{Z}^M$$

has the form

$$C^{+}(\mathcal{Y}|\mathcal{Z}) = \sum_{n^{A} \in \mathbb{Z}^{M}} c_{n}^{+} \exp i(h\mathcal{Z}^{AB}(2\pi n_{A})(2\pi n_{B}) + 2\pi n_{C}\mathcal{Y}^{C}).$$

. .

Theta functions as solutions of HS equations

For
$$c_n^+ = 1$$
, $h = \frac{1}{4}\pi^{-1}$

$$C^+(\mathcal{Y}|\mathcal{Z}) = \theta(\mathcal{Y}, \mathcal{Z}) = \sum_{n^A \in \mathbb{Z}^M} \exp i\pi (\mathcal{Z}^{AB} n_A n_B + 2n_A \mathcal{Y}^A).$$

Complexified space-time coordinates \mathcal{Z}^{AB} : theta function period matrix

$$\theta(\mathcal{Y} + m\mathcal{Z}, \mathcal{Z}) = \exp(-i\pi \mathcal{Z}^{AB} m_A m_B - 2i\pi m_A \mathcal{Y}^A) \theta(\mathcal{Y}, \mathcal{Z}), \qquad m_A$$

HS theory and the theory of theta functions are based on the Sp(2M) symmetry and its Weyl-Heisenberg extension which is the HS symmetry

Theta functions with characteristics

$$\theta[_b^a](\mathcal{Y}, \mathcal{Z}) = \exp\left(i\pi \mathcal{Z}^{AB} a_A a_B + 2i\pi a_A \mathcal{Y}^A + 2i\pi a_A b^A\right) \quad \theta(\mathcal{Y} + \mathcal{Z}a + b, \mathcal{Z})$$
$$\left(b^A, a_A \in \mathbb{R}^M\right)$$

that also solve Unfolded Equations, result from the action of the HS symmetry

$$\delta heta(\mathcal{Y}|\mathcal{Z}) = heta(\mathcal{Y}^B + k^B - 2\mu \mathcal{Z}^{BC} j_C | \mathcal{Z}) \; \exp{(j_A h^A + j_A \mathcal{Y}^A - \mu \mathcal{Z}^{AB} j_A j_B)}$$
 with $j_A = 2i\pi a_A$, $k^B = b^B$ and $\mu = \frac{i}{4\pi}$ on the theta functions.

Theta functions: most symmetric solutions of HS field equations

 $\Gamma_{1,2} \in Sp(2M|\mathbb{Z})$ is a leftover symmetry

Reduction of the theta-function solution to Minkowski space gives solutions of 4d massless field equations

Higher spin currents in Minkowski space

The infinite set of conformal HS symmetries suggests the existence of the corresponding conserved HS currents.

Closed three-form

Gelfond, Skvortsov, MV (2006)

$$\Omega_{3}(\eta, C^{k}, C^{l}) = dx_{\alpha\alpha'} \wedge dx^{\alpha\gamma'} \wedge dx^{\gamma\alpha'} w_{\gamma} w_{\gamma'} \eta(w, u) C^{k}(Y|x) C^{l}(iY|x)|_{Y}$$

$$w_{\alpha} = \frac{\partial}{\partial Y^{\alpha}}, \quad w_{\alpha'} = \frac{\partial}{\partial Y^{\alpha'}}, \quad u^{\alpha} = x^{\alpha \alpha'} \frac{\partial}{\partial Y^{\alpha'}}, \quad u^{\alpha'} = x^{\alpha \alpha'} \frac{\partial}{\partial Y^{\alpha}}.$$

provided that $C^k(Y|x)$ satisfy 4d Unfolded Equations

$$\frac{\partial}{\partial x^{\alpha\beta'}} C^k(Y|x) + \frac{\partial^2}{\partial Y^{\alpha}\partial Y^{\beta'}} C^k(Y|x) = 0$$

-

Bilinear currents in \mathcal{M}_M

2M-form

$$\varpi^{2M}(g) = \left(d \mathcal{W}_A \wedge (\mathcal{W}_B d \mathcal{Z}^{AB} - d \mathcal{Y}^A) \right)^M g(\mathcal{W}, \mathcal{Y} | \mathcal{Z})$$

is closed provided that g(W, Y|Z) is holomorphic and satisfies the Current Equations:

$$\left(\frac{\partial}{\partial \mathcal{Z}^{AB}} + \mathcal{W}_{(A} \frac{\partial}{\partial \mathcal{Y}^{B)}}\right) g(\mathcal{W}, \mathcal{Y} | \mathcal{Z}) = 0.$$

Regular solutions of the current equations form a commutative algebra ${\cal R}$

$$\eta(\mathcal{W}, \mathcal{Y}|\mathcal{Z}) = \varepsilon(\mathcal{W}_A, \mathcal{Y}^C - \mathcal{Z}^{CB}\mathcal{W}_B)$$

with arbitrary regular $\varepsilon(\mathcal{W}, \mathcal{Y})$.

Singular solutions S form a R-module, i.e., although it may not be possible to multiply singular solutions with themselves, they can be multiplied by regular ones.

The closed form ϖ gives rise to nontrivial conserved currents for

$$g(W, Y|Z) = \eta(W, Y|Z)f(W, Y|Z),$$

where $\eta(\mathcal{W}, \mathcal{Y}|\mathcal{Z}) \in R$ and

$$f(\mathcal{W}, \mathcal{Y}, |\mathcal{Z}) = (2\pi)^{-M/2} \int_{\Sigma^M(\mathcal{U})} d^M \mathcal{U} \exp\left(-i\mathcal{W}_C \mathcal{U}^C\right) T(\mathcal{U}, \mathcal{Y}|\mathcal{Z}),$$

The Current Equations for f(W, Y|Z) translate to the following rank 2 Unfolded Equations for the generalized stress tensor

$$\left\{ \frac{\partial}{\partial \mathcal{Z}^{AB}} - ih \, \frac{\partial}{\partial \mathcal{V}^{(A}} \frac{\partial}{\partial \mathcal{U}^{B)}} \right\} T(\mathcal{U}, \, \mathcal{Y}|\mathcal{Z}) = 0.$$

This is solved by

$$T(\mathcal{U}, \mathcal{Y}|\mathcal{Z}) = \mathcal{C}^{+}(\mathcal{U} - \mathcal{Y}|\mathcal{Z})\mathcal{C}^{-}(\mathcal{U} + \mathcal{Y}|\mathcal{Z})$$

provided that $C^+(\mathcal{U}|\mathcal{Z})$ and $C^-(\mathcal{U}|\mathcal{Z})$ satisfy the equations

$$\left(\frac{\partial}{\partial \mathcal{Z}^{AB}} \pm i h \frac{\partial^2}{\partial \mathcal{U}^A \partial \mathcal{U}^B}\right) \mathcal{C}^{\pm}(\mathcal{U}|\mathcal{Z}) = 0.$$

- -

From \mathcal{M}_4 to Minkowski space

In terms of two-component complex spinors

$$\mathcal{Z}^{AB} = (\mathcal{Z}^{\alpha\beta}, \mathcal{Z}^{\alpha\alpha'}, \mathcal{Z}^{\alpha'\beta'}) = (X^{\alpha\beta} + i\mathbf{X}^{\alpha\beta}, X^{\alpha\alpha'} + i\mathbf{X}^{\alpha\alpha'}, X^{\alpha'\beta'} + i\mathbf{X}^{\alpha'\beta'}),$$

$$\mathcal{Y}^{A} = (\mathcal{Y}^{\alpha}, \mathcal{Y}^{\alpha'}), \quad \mathcal{W}^{A} = (\mathcal{W}^{\alpha}, \mathcal{W}^{\alpha'}), \quad \mathcal{U}^{A} = (\mathcal{U}^{\alpha}, \mathcal{U}^{\alpha'}).$$

$$\overline{X^{\alpha\beta}} = X^{\alpha'\beta'}, \quad \overline{X^{\alpha\beta'}} = X^{\beta\alpha'}, \quad \overline{X^{\alpha\beta}} = \mathbf{X}^{\alpha'\beta'}, \quad \overline{X^{\alpha\beta'}} = \mathbf{X}^{\beta\alpha'}.$$

Let the integration cycle Σ^8 be

$$\Sigma^{8} = \sigma^{3}(\mathcal{Z}^{\alpha\beta'}) \times \sigma^{1}(\mathcal{Z}^{\alpha\beta}, \mathcal{Z}^{\alpha'\beta'}, \mathcal{Y}) \times R^{4}(\mathcal{W}),$$

where $\sigma^3(\mathcal{Z}^{\alpha\beta'})$ is a three-dimensional surface in the complexified Minkows space and $\sigma^1(\mathcal{Z}^{\alpha\beta},\mathcal{Z}^{\alpha'\beta'},\mathcal{Y})$ is a one-dimensional cycle in the complexified spinning space.

To reduce integration over $\sigma^3(\mathcal{Z}^{\alpha\beta'}) \times \sigma^1$ to non-zero integration over a space surface $\sigma^3(\mathcal{Z}^{\alpha\beta'})$ in Minkowski space the current should have a singularity inside σ^1 .

An elementary calculation then shows

$$Q = \int_{\Sigma^8} d^4 \mathcal{W} \wedge d\mathcal{Z}_{\alpha\gamma'} \wedge d\mathcal{Z}^{\alpha\beta'} \wedge d\mathcal{Z}^{\beta\gamma'} \wedge d\Lambda(\mathcal{W}, \mathcal{Y} | \mathcal{Z}) g(\mathcal{W}, \mathcal{Y} | \mathcal{Z}) \mathcal{W}_{\beta} \mathcal{W}_{\beta'},$$

where

$$\Lambda(\mathcal{W}, \mathcal{Y}|\mathcal{Z}) = \left(\mathcal{W}_{\mu}\mathcal{W}_{\nu} \mathcal{Z}^{\mu\nu} - \mathcal{W}_{\mu'}\mathcal{W}_{\nu'} \mathcal{Z}^{\mu'\nu'} + \mathcal{W}_{\mu} \mathcal{Y}^{\mu} - \mathcal{W}_{\mu'} \mathcal{Y}^{\mu'}\right)$$

That $\Lambda(W, \mathcal{Y}|\mathcal{Z})$ solves the current equation and is independent of $\mathcal{Z}^{\alpha\beta'}$. allows to introduce a singularity free of the Minkowski coordinates $\mathcal{Z}^{\alpha\beta'}$.

$$g(\mathcal{W}, \mathcal{Y}|\mathcal{Z}) = \Lambda^{-1}(\mathcal{W}, \mathcal{Y}|\mathcal{Z}) \, \eta(\mathcal{W}, \mathcal{Y}|\mathcal{Z}) \, f(\mathcal{W}, \mathcal{Y}|\mathcal{Z}),$$

where $\eta(\mathcal{W}, \mathcal{Y}|\mathcal{Z})$ is a polynomial parameter, while $f(\mathcal{W}, \mathcal{Y}|\mathcal{Z})$ is Fourier transform of the stress tensor $T_{\mathcal{C}^+,\mathcal{C}^-}(\mathcal{U}, \mathcal{Y}|\mathcal{Z})$.

1 ^

The idea is to choose a cycle σ^1 so that

$$Q = \int_{\Sigma^8} d^4 \mathcal{W} \wedge d\mathcal{Z}_{\alpha\gamma'} \wedge d\mathcal{Z}^{\alpha\beta'} \wedge d\mathcal{Z}^{\beta\gamma'} \wedge \frac{d\Lambda}{\Lambda} \mathcal{W}_{\beta} \mathcal{W}_{\beta'} \eta f$$

gives the residue in $\Lambda(\mathcal{W}, \mathcal{Y}|\mathcal{Z})$ leading to

$$Q \sim \int_{\mathbb{R}^4 \times \sigma^3} d^4 \mathcal{W} \wedge d\mathcal{Z}_{\alpha \gamma'} \wedge d\mathcal{Z}^{\alpha \beta'} \wedge d\mathcal{Z}^{\beta \gamma'} \mathcal{W}_{\beta} \mathcal{W}_{\beta'} \eta f|_{\Lambda = 0}.$$

This gives the conserved charge in Minkowski space

$$\int_{\sigma^3} d^3 X^{\beta\beta'} \frac{\partial^2}{\partial U^{\beta} \partial U^{\beta'}} \eta \left(\frac{\partial}{\partial U^C}, -X^{AB} \frac{\partial}{\partial U^B} \right) T(U, 0|X)|_{U=0}$$

The doubling of variables W, Y allows us to introduce singularities (fluxes) in the complexified spinning variables $W, Y, Z^{\alpha\beta}, Z^{\alpha'\beta'}$ needed to reproduce HS currents in Minkowski space-time.

__

Conclusions

Unfolded dynamics and quantum mechanics

Unfolded HS dynamics and theta functions

HS currents in Minkowski space are supported by fluxes in the spinning space

Application: \mathcal{D} -functions and integral evolution formula