Cancellations of ultraviolet divergences in supergravity

Pierre Vanhove

IPhT - CEA/Saclay

May 29, 2008 @ "Quarks 2008"

based on

- <u>arXiv:0802.0868</u> and <u>arXiv:0805.3682</u> with N.E.J.Bjerrum-Bohr
- \bullet hep-th/0611273 and hep-th/0610299 with M.B. Green, J.G.Russo

Outline

1 UV behaviour of gravity amplitudes

2 One-loop gravity amplitudes in $\mathcal{N}=8$ supergravity

3 Conclusion & Outlook

Gravity describes the interactions of a massless spin 2 particle with a dimensionfull coupling constant

$$[\kappa_{(D)}^2] = (\mathit{length})^{D-2}$$

A L-loop 4-point pure gravity amplitude in dimensions D has the mass

$$[\mathfrak{M}_{L}^{(4)}] = \text{mass}^{(D-2)L+2}$$

ullet At one-loop L=1 the amplitude is diverging with for counter-term

$$\mathfrak{M}_{1}^{(4)} \sim \frac{1}{\epsilon} \left[\alpha R_{mnpq}^{2} + \beta R_{mn}^{2} + \gamma R^{2} \right], \qquad D = 4 - 2\epsilon$$

- In 4d $R_{mnpq}^2 \sim 4R_{mn}^2 R^2$, and for *pure* gravity $R_{mn} = 0 = R$ so the divergence is zero *on-shell* 't Hooft/Veltman
- At two-loop L=2 Sagnotti/Goroff; van de Ven

$$\mathfrak{M}_2^{(4)} \sim rac{1}{\epsilon} \left(\kappa_{(4)}^2 R_{mnpq}
ight)^3$$

• At L-loop order a new counter-term arises

$$\mathfrak{M}_L^{(4)} \sim rac{1}{\epsilon^{L-1}} \left(\kappa_{(4)}^2 \, R_{mnpq}
ight)^{L+1}$$

ullet At one-loop L=1 the amplitude is diverging with for counter-term

$$\mathfrak{M}_{1}^{(4)} \sim \frac{1}{\epsilon} \left[\alpha R_{mnpq}^{2} + \beta R_{mn}^{2} + \gamma R^{2} \right], \qquad D = 4 - 2\epsilon$$

- In 4d $R^2_{mnpq}\sim 4R^2_{mn}-R^2$, and for pure gravity $R_{mn}=0=R$ so the divergence is zero on-shell 't Hooft/Veltman
- At two-loop L=2 Sagnotti/Goroff; van de Ven

$$\mathfrak{M}_2^{(4)} \sim rac{1}{\epsilon} \left(\kappa_{(4)}^2 R_{mnpq}
ight)^3$$

• At L-loop order a new counter-term arises

$$\mathfrak{M}_L^{(4)} \sim rac{1}{\epsilon^{L-1}} \left(\kappa_{(4)}^2 \, R_{mnpq}
ight)^{L+1}$$

ullet At one-loop L=1 the amplitude is diverging with for counter-term

$$\mathfrak{M}_{1}^{(4)} \sim \frac{1}{\epsilon} \left[\alpha R_{mnpq}^{2} + \beta R_{mn}^{2} + \gamma R^{2} \right], \qquad D = 4 - 2\epsilon$$

- In 4d $R_{mnpq}^2 \sim 4R_{mn}^2 R^2$, and for *pure* gravity $R_{mn} = 0 = R$ so the divergence is zero *on-shell* 't Hooft/Veltman
- At two-loop L=2 Sagnotti/Goroff; van de Ven

$$\mathfrak{M}_2^{(4)} \sim rac{1}{\epsilon} \left(\kappa_{(4)}^2 R_{mnpq}
ight)^3$$

• At L-loop order a new counter-term arises

$$\mathfrak{M}_L^{(4)} \sim \frac{1}{\epsilon^{L-1}} \left(\kappa_{(4)}^2 R_{mnpq} \right)^{L+1}$$

ullet At one-loop L=1 the amplitude is diverging with for counter-term

$$\mathfrak{M}_{1}^{(4)} \sim \frac{1}{\epsilon} \left[\alpha R_{mnpq}^{2} + \beta R_{mn}^{2} + \gamma R^{2} \right], \qquad D = 4 - 2\epsilon$$

- In 4d $R_{mnpq}^2 \sim 4R_{mn}^2 R^2$, and for *pure* gravity $R_{mn} = 0 = R$ so the divergence is zero *on-shell* 't Hooft/Veltman
- At two-loop L=2 Sagnotti/Goroff; van de Ven

$$\mathfrak{M}_2^{(4)} \sim rac{1}{\epsilon} \left(\kappa_{(4)}^2 R_{mnpq}
ight)^3$$

• At L-loop order a new counter-term arises

$$\mathfrak{M}_{L}^{(4)} \sim rac{1}{\epsilon^{L-1}} \left(\kappa_{(4)}^2 \, R_{mnpq}
ight)^{L+1}$$

$$\mathcal{N} = 8$$
 supergravity

 \bullet The amplitude factorizes a R^4 and more powers of derivatives

$$[\mathfrak{M}_{L}^{(D)}] = \text{mass}^{(D-2)L-6-2\beta_{L}} D^{2\beta_{L}} R^{4}$$

$$\mathcal{N} = 8$$
 supergravity

ullet The amplitude factorizes a R^4 and more powers of derivatives

$$[\mathfrak{M}_{I}^{(D)}] = \text{mass}^{(D-2)L-6-2\beta_{L}} D^{2\beta_{L}} R^{4}$$

Critical dimension for UV divergence is

$$D \ge D_c = 2 + \frac{6 + \frac{2\beta_L}{L}}{L}$$

$$\mathcal{N} = 8$$
 supergravity

 \bullet The amplitude factorizes a R^4 and more powers of derivatives

$$[\mathfrak{M}_{L}^{(D)}] = \operatorname{mass}^{(D-2)L-6-2\beta_{L}} D^{2\beta_{L}} R^{4}$$

Critical dimension for UV divergence is

$$D \ge D_c = 2 + \frac{6 + \frac{2\beta_L}{L}}{L}$$

 Various arguments from string duality and explicit computations indicate that Green, Russo, Vanhove

UV behaviour of multiloop amplitudes

When
$$\beta_L = L$$
 the amplitude behaves has

Green, Russo, Vanhove

$$[\mathfrak{M}_{L}^{(D)}] = \mathrm{mass}^{(D-4)L-6} D^{2L} R$$

UV behaviour of multiloop amplitudes

When $\beta_L = L$ the amplitude behaves has

reen, Russo, Vanhove

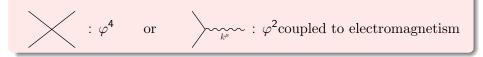
$$[\mathfrak{M}_L^{(D)}] = \text{mass}^{(D-4)L-6} D^{2L} R^4$$

- Non-renormalisation theorems: $D^{2g}R^4$ are not renormalized after genus-g in string theory
 - ullet confirmed by explicit computation to $g \leq 5$ Berkovits
- ullet The UV dependence is the same as for $\mathcal{N}=4$ SYM amplitudes
- If true for all L then the theory is perturbatively finite in 4d

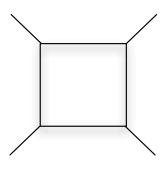
$$D \ge D_c = 4 + \frac{6}{L}$$

Structure of gravity amplitudes

$$[\mathfrak{M}_L^{(4)}] = \mathrm{mass}^{(D-4)L-6} \, D^{2L} R^4$$
 indicates "effective" interactions



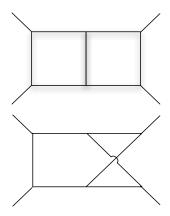
 $\mathcal{N}=8$ Supergravity amplitudes are expected to be expandable on the same basis of integral functions as $\mathcal{N}=4$ SYM



One loop amplitude is given by φ^3 scalar box amplitude with $\beta_1=0$

$$\mathfrak{M}_{4;1}^{(D)} = R^4 \left[I_{\text{box}}(s,t) + I_{\text{box}}(s,u) + I_{\text{box}}(t,u) \right]$$

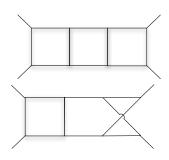
Green, Schwarz, Brink



Two-loop amplitude is given by the φ^3 scalar planar and non-planar doublebox amplitude with $\beta_2=2$

$$\mathfrak{M}_{4;1}^{(D)} = D^4 R^4 \left[I_{\text{doublebox}}^P(s) + I_{\text{doublebox}}^{NP}(s) + (t-, u - \text{channels}) \right]$$

Bern et al.; D'Hoker, Phong Berkovits; Berkovits, Mafra



higher-loop φ^3 scalar *ladder* contributions behaves as $\beta_L = 2(L-1)$

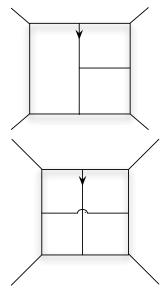
$$\mathfrak{M}_{4;1}^{(D)} = D^{4L-2}R^4 \left[I_{\text{ladder}}^P(s) + I_{\text{ladder}}^{NP}(s) + (t-, u - \text{channels}) \right]$$

which is too much converging for being the leading $\mathcal{N}=8$ UV behaviour

Berkovits

Bern, Dixon, Roiban

Bern, Carrasco, Dixon, Johansson, Kosower, Roiban



higher-loop have non-ladder topologies which individually do not behaves as $\beta_L = L$

$$= {\it D}^4 {\it R}^4 \, \int d^D \ell_1 d^D \ell_2 d^D \ell_3 \, \frac{(\ell_1 \cdot k_1)(\ell_2 \cdot k_2)}{(\ell_1 - k_1)^2 \cdots}$$

only the sum of all these contributions satisfy the rule $\beta_L = L$

Berkovits

Bern, Dixon, Roiban

Bern, Carrasco, Dixon, Johansson, Kosower, Roiban

(On-shell) Extended Supersymmetry improves UV behaviour

Grisaru, Deser, Stelle, Howe, Lindström, Kallosh, ...

- ullet $\mathcal{N} \geq 1$ susy forbids R^3 counterterms: supergravity is finite at L=2
- for $\mathcal{N} \leq 4$ susy a *first possible* counter-terms at L=3 loop order

$$S_{\mathcal{N}\leq 4}^{(3)} = \int d^4x \int d^{4\mathcal{N}}\theta \, E\left(\varphi + \dots + \theta^N R\right)^4 = \int d^4x \sqrt{g} \left(\kappa_{(4)}^2 R\right)^4$$

ullet for $\mathcal{N} \geq$ 4 a first possible counter-term at $L=\mathcal{N}-1$ loop order

$$S_{N\geq 4}^{(N-1)} = \int d^4x \int d^{4N}\theta E(\varphi + \dots + \theta^4 R)^2$$
$$= \int d^4x \sqrt{g} (\kappa_{(4)}^2)^N D^{2(N-4)} R^4$$

(On-shell) Extended Supersymmetry improves UV behaviour

Grisaru, Deser, Stelle, Howe, Lindström, Kallosh, ...

- ullet $\mathcal{N} \geq 1$ susy forbids R^3 counterterms: supergravity is finite at L=2
- ullet for $\mathcal{N} \leq$ 4 susy a *first possible* counter-terms at L=3 loop order

$$S_{\mathcal{N}\leq 4}^{(3)} = \int d^4x \int d^{4\mathcal{N}}\theta \, E \, (\varphi + \dots + \theta^N R)^4 = \int d^4x \sqrt{g} \, (\kappa_{(4)}^2 R)^4$$

ullet for $\mathcal{N} \geq$ 4 a first possible counter-term at $L=\mathcal{N}-1$ loop order

$$S_{N\geq 4}^{(N-1)} = \int d^4x \int d^{4N}\theta E (\varphi + \dots + \theta^4 R)^2$$
$$= \int d^4x \sqrt{g} (\kappa_{(4)}^2)^N D^{2(N-4)} R^4$$

(On-shell) Extended Supersymmetry improves UV behaviour

Grisaru, Deser, Stelle, Howe, Lindström, Kallosh, ...

- ullet $\mathcal{N} \geq 1$ susy forbids \mathcal{R}^3 counterterms: supergravity is finite at $\mathcal{L}=2$
- ullet for $\mathcal{N} \leq$ 4 susy a *first possible* counter-terms at L=3 loop order

$$S_{\mathcal{N}\leq 4}^{(3)} = \int d^4x \int d^{4\mathcal{N}}\theta \, E \, (\varphi + \dots + \theta^N R)^4 = \int d^4x \sqrt{g} \, (\kappa_{(4)}^2 R)^4$$

ullet for $\mathcal{N} \geq$ 4 a first possible counter-term at $L=\mathcal{N}-1$ loop order

$$S_{\mathcal{N}\geq 4}^{(\mathcal{N}-1)} = \int d^4x \int d^{4\mathcal{N}}\theta \, E \, (\varphi + \dots + \theta^4 R)^4$$
$$= \int d^4x \sqrt{g} \, (\kappa_{(4)}^2)^{\mathcal{N}} D^{2(\mathcal{N}-4)} R^4$$

 $\mathcal{N}=8$ sugra is invariant under local $SU(8)_R$ and global E_7

spin/dimension	2	3/2	1	1/2	0
superfield	$W_{lphaeta\gamma\delta}$	$W^i_{lphaeta\gamma}$	$W_{lphaeta}^{ij}$	χ_{lpha}^{ijk}	$arphi^{ijkl}$
$SU(8)_R$ rep.	1	8	28	56	70
Loop	11	10	9	8	7

• $SU(8) \times E_7$ invariance only use superfield of dimension $\geq 1/2$.

 $\mathcal{N}=8$ sugra is invariant under local $SU(8)_R$ and global E_7

spin/dimension	2	3/2	1	1/2	0
superfield	$W_{lphaeta\gamma\delta}$	$W^i_{lphaeta\gamma}$	$W_{lphaeta}^{ij}$	χ_{lpha}^{ijk}	φ^{ijkl}
$SU(8)_R$ rep.	1	8	28	56	70
Loop	11	10	9	8	7

- $SU(8) \times E_7$ invariance only use superfield of dimension $\geq 1/2$.
- A first possible counter-term is a eight-loop one Kallosh

$$\int d^4x d^{32}\theta E (\chi^{\alpha}_{ijk} \bar{\chi}^{ijk}_{\alpha})^2 = \int d^4x \sqrt{g} \, \kappa^{18}_{(4)} D^{10} R^4$$

 $\mathcal{N}=8$ sugra is invariant under local $SU(8)_R$ and global E_7

spin/dimension	2	3/2	1	1/2	0
superfield	$W_{lphaeta\gamma\delta}$	$W^i_{lphaeta\gamma}$	$W_{lphaeta}^{ij}$	χ_{lpha}^{ijk}	$arphi^{ijkl}$
$SU(8)_R$ rep.	1	8	28	56	70
Loop	11	10	9	8	7

- $SU(8) \times E_7$ invariance only use superfield of dimension $\geq 1/2$.
- Conformal Invariance and SO(1,9) Lorentz invariance implies that the first possible counter-term is the nine-loop contributions

Green, Russo, Vanhove

$$\int d^4x d^{32}\theta \ E \ W^4 \sim \int d^4x \sqrt{g} \ \kappa_{(4)}^{20} D^{12} R^4$$

After some order in derivative supersymmetry runs out of steam and no more powers of momenta is factorized out of the amplitude leading to a formula

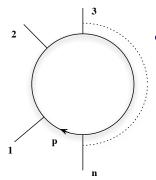
$$D \ge D_c = \frac{2}{L}; \quad 6 \le \beta \le 18$$

Which gives a possible first divergence

$$3 < L < 9, D = 4$$

The absence of 3-loop divergences in 4d in the four-graviton amplitude found by $\tt Bern\ et\ al.$ means that $\mathcal{N}\geq 5$ on-shell supersymmetries are at work

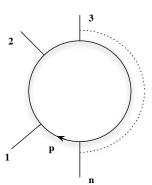
One-loop amplitudes



• For $\mathcal{N}=4$ SYM integrals n-4 powers of loop momenta

$$\mathfrak{A}_{n;1} \sim \int d^D \ell \, \frac{\ell^{n-4}}{(\ell-k_1)^2\cdots(\ell-k_1-\cdots-k_n)^2}$$

One-loop amplitudes



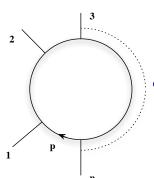
• For $\mathcal{N}=4$ SYM integrals n-4 powers of loop momenta

$$\mathfrak{A}_{n;1} \sim \int d^D \ell \, \frac{\ell^{n-4}}{(\ell-k_1)^2 \cdots (\ell-k_1-\cdots-k_n)^2}$$

• For $\mathcal{N}=8$ amplitude 2n-8 are expected

$$\mathfrak{M}_{n;1} \sim \int d^D \ell \, \frac{\ell^{2n-8}}{(\ell-k_1)^2 \cdots (\ell-k_1-\cdots-k_n)^2}$$

One-loop amplitudes



• For $\mathcal{N}=4$ SYM integrals n-4 powers of loop momenta

$$\mathfrak{A}_{n;1} \sim \int d^D \ell \, \frac{\ell^{n-4}}{(\ell-k_1)^2 \cdots (\ell-k_1-\cdots-k_n)^2}$$

• but only n-4 are found

Bjerrum-Bohr et al., Bern et al.

$$\mathfrak{M}_{n;1} \sim \int d^D \ell \, \frac{\ell^{n-4}}{(\ell-k_1)^2 \cdots (\ell-k_1-\cdots-k_n)^2}$$

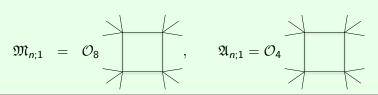
Extra cancellation of n-4 powers of loop momentum beyond the supersymmetric ones

The no triangle property in $\mathcal{N}=8$

- Gravity does not have color factor
 - summation over all the permutations at one-loop
 - Sum over all the planar and nonplanar diagrams at higher loop order
- Gauge invariance $\varepsilon_{\mu\nu} \to \varepsilon_{\mu\nu} + \partial_{\mu} \mathbf{v}_{\nu} + \partial_{\nu} \mathbf{v}_{\mu}$

$$\mathfrak{M}_{n;1} \sim (\varepsilon_{\mu\nu} \, k)^8 \, (\varepsilon_{\mu\nu} \, k)^{n-4} \int d^D \ell \, \frac{(\ell \cdot \overline{h})^{n-4}}{(\ell - k_1)^2 \cdots (\ell - k_{1 \cdots n})^2}$$
$$\sim \frac{(\varepsilon_{\mu\nu} \, k)^n \, (k_i \cdot k_j)^4}{(k_i \cdot k_j)^{n/2}} \int d^D \ell \, \frac{1}{(\ell - K_1)^2 \cdots (\ell - K_{1 \cdots 4})^2}$$

The $\mathcal{N}=8$ are given by scalar boxes like $\mathcal{N}=4$ SYM



Gravity theories with less or not supersymmetry

Since the **extra** cancellations are not due to supersymmetry they occur as well in theories with less or no supersymmetry

ullet $\mathcal{N}=4$ would have a critical dimension for UV divergence

$$D \ge D_c = 3 + \frac{6}{I}$$

 Pure gravity One-loop amplitude would be at most logarithmically diverging like QCD

Bjerrum-Bohr, Vanhove

- Consequences at higher-loop order
 - Needed to go beyond the six genus limit non-renormalisation in pure spinor string theory
 - These cancellation are needed for the $\beta_L = L$ rule to all loop order.
- Extension to the case of supergravity coupled to matter fields and with less supersymmetries
- Applies as well to QED amplitude with surprising results

- Consequences at higher-loop order
 - Needed to go beyond the six genus limit non-renormalisation in pure spinor string theory
 - These cancellation are needed for the $\beta_L = L$ rule to all loop order.
- Extension to the case of supergravity coupled to matter fields and with less supersymmetries
- Applies as well to QED amplitude with surprising results

- Consequences at higher-loop order
 - Needed to go beyond the six genus limit non-renormalisation in pure spinor string theory
 - These cancellation are needed for the $\beta_L = L$ rule to all loop order.
- Extension to the case of supergravity coupled to matter fields and with less supersymmetries
- Applies as well to QED amplitude with surprising results

- Consequences at higher-loop order
 - Needed to go beyond the six genus limit non-renormalisation in pure spinor string theory
 - These cancellation are needed for the $\beta_L = L$ rule to all loop order.
- Extension to the case of supergravity coupled to matter fields and with less supersymmetries
- Applies as well to QED amplitude with surprising results

- Consequences at higher-loop order
 - Needed to go beyond the six genus limit non-renormalisation in pure spinor string theory
 - These cancellation are needed for the $\beta_L = L$ rule to all loop order.
- Extension to the case of supergravity coupled to matter fields and with less supersymmetries
- Applies as well to QED amplitude with surprising results