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1 Two dimensional conformal field theory and

critical phenomena

A typical example is the Ising model. The critical point

is described by a two dimensional conformal field theory.

We are interested in local observables, for example

corellations of spin variables.

The guideline in constructing a conformal field theory

is a requirement of closed associative operator algebra.

The standard procedure of constructing a conformal

field theory is as follows.

We start from a chiral algebra of symmetry (Virasoro,

superconformal, Kac–Mody algebra).

Then we find a class of representations closed under fu-

sion. This guarantees a closed associative operator alge-

bra.
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These allow us in principle to calculate all correlation

functions of any local observables.

We can ask the question what happen if we include

nonlocal observables into the theory.

For example we can be interested in probability that

two Ising spins belong to the same claster. In this way

we obtain a model that contains local and nonlocal ob-

servables.

There are also models that do not contain nontrivial

local observables. A typical example of such a model is

the two dimensional percolation.

The problem in the percolation theory is a calculation

of the probability that there are several clasters between

different points.

Another one model in which only nonlocal observables

are worth of investigating is the model of branched poly-

mers. At the same time branched polymers give the self–

organized critical state in the abelian sand–pile model.

2 Logarithmic conformal field theory

We can investigate universality classes of critical phenom-

ena with nonlocal observables.
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As a guideline we keep the requirement of a closed

associative operator algebra.

In this approach the universaliti classes of critical phe-

nomena with nonlocal observables are described by so

called logarithmic conformal field theory.

The terminology appears from the fact that a confor-

mal field theory corresponding to critical phenomena with

nonlocal observables contains logarithms in correlation

functions.

Appearing of logarithms in correlation functions is equiv-

alent to appearing of nontrivial Jordan cells in dilatation

operator L0.

The name “logarithmic” and first examples was sug-

gested in

V. Gurarie, Logarithmic Operators in Conformal Field

Theory, Nucl.Phys. B410 (1993) 535-549.

A significant application of logarithmic conformal field

theory was

J. Cardy, Conformal Invariance and Percolation, arXiv:

math-ph/0103018

where crossing probabilities in scailing limit of two di-

mensional percolation were calculated.

Until the recent time there was no a systematic way to

construct a logarithmic CFTs.
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We suggested a method of constructing a LCFT based

on a quantum group approach.

J. Fjelstad, J. Fuchs, S. Hwang, A.M. Semikhatov,

and I.Yu. Tipunin, Logarithmic conformal field theo-

ries via logarithmic deformations, Nucl. Phys. B633

(2002) 379–413 [hep-th/0201091]

J. Fuchs, S. Hwang, A.M. Semikhatov, and I.Yu. Tipunin,

Nonsemisimple fusion algebras and the Verlinde for-

mula, Commun. Math. Phys. 247 (2004) 713–742 [hep-

th/0306274]

B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and

I.Yu. Tipunin, Modular group representations and fu-

sion in logarithmic conformal field theories and in

the quantum group center, Commun.Math.Phys. 265

(2006) 47-93, hep-th/0504093

B.L. Feigin, A.M. Gainutdinov, A.M. Semikhatov, and

I.Yu. Tipunin, Logarithmic extensions of minimal mod-

els: characters and modular transformations, Nucl.Phys.

B757 (2006) 303-343, hep-th/0606196

As an application of the method a set of LCFTs was

constructed. The models are numerated by pair of co-

prime integers (p, p′), 1 ≤ p < p′. The models with

2 ≤ p < p′ are logarithmic extensions of the Vira-

soro minimal models. Logarithmic conformal field models

(1, p) are also interesting, however they do not correspond
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to minimal models.

All these models have large symmetry algebra Wp,p′

which contains the Virasoro algebra.

In

P.A. Pearce, J. Rasmussen, J.-B. Zuber, Logarithmic

Minimal Models, J.Stat.Mech. 0611 (2006) P017, hep-

th/0607232

there was suggested a class of lattice models LM(p, p′)

where p and p′ are coprime integers with 1 ≤ p < p′.

These models contain critical percolation and critical branched

polymers as particular cases LM(3, 4) and LM(1, 2) re-

spectively.

In the papers

P.A. Pearce, J. Rasmussen, P. Ruelle, Integrable Bound-

ary Conditions and W-Extended Fusion in the Loga-

rithmic Minimal Models LM(1,p), arXiv:0803.0785

J. Rasmussen, P.A. Pearce, W-Extended Fusion Al-

gebra of Critical Percolation, arXiv:0804.4335

J. Rasmussen, W-Extended Logarithmic Minimal Mod-

els, arXiv:0805.2991

it was shown that the scailing limit of LM(p, p′) coincide

with (p, p′) logarithmic conformal field theories.
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3 (1, p) LCFTs

We fix integer p ≥ 2

α+ =
√

2p , α− = −
√√√√2

p
, α+α− = −2, α0 = α++α− =

√√√√2

p
(p−1)

We start with free scalar field ϕ with the Lagrangian

L = ∂µϕ∂
µϕ+ α0Rϕ

The energy momentum tensor is

T =
1

2
∂ϕ∂ϕ+

α0

2
∂2ϕ

This T commutes with screening operators

F =
1

2πi

∮
dzeα−ϕ(z), e =

1

2πi

∮
dzeα+ϕ(z)

To construct a LCFT we study the centralizer of the screen-
ing F .

The centralizer of F is a W algebra generated by two fields
W±(z) with the conformal dimension 2p− 1.

This W algebra has very complicate structure and we even
cannot write commutators of the algebra in a closed form. For
example

W+(z)W−(w) =
1

(z − w)4p−2 +
cT

(z − w)4p−4 + . . .

However, the representation category of this algebra is equiv-
alent to the representation category of the quantum group U qs`(2).
This quantum group is constructed by Drinfeld double proce-
dure from the screening F .
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The Hopf algebra U qs`(2) is generated by E, F , and K with
the relations

Ep = F p = 0, K2p = 1

and the Hopf-algebra structure given by

KEK−1 = q2E, KFK−1 = q−2F,

[E,F ] =
K −K−1

q − q−1 ,

∆(E) = 1⊗E+E⊗K, ∆(F ) = K−1⊗F+F⊗1, ∆(K) = K⊗K,
ε(E) = ε(F ) = 0, ε(K) = 1,

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1,

where q = e
iπ
p .

This algebra has 2p irreducible representations X±s , 1 ≤ s ≤
p.

TheW algebra representations that demonstrate nondiagonal
L0 action correspond to projective U qs`(2) modules.

Any statement in this LCFT can be reformulated in

terms of the quantum group U qs`(2).
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