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Nucleon form factors

(N()juIN () = a(p') (7. F1(°) + 10700, F2(q7) / (2M) ) u(p)

Gp(Q*=—¢") = F(Q°) - Q F2(Q%)/(4M")
Gu(Q%) = h(Q%)+ R(Q%)

(NG IN ) = a(@) (157.Ga(Q%) + 150.Gp(Q%) /M ) u(p)

Gg, Gy, G, Gp determined from e — p and ¥ — p scattering

experiments at Jlab, Bates, BNL

see e.g. J. Arrington, C.D. Roberts, J.M. Zanotti nucl-th/0611050



Strange quark contribution to the form factors
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see e.g. Stephen Pate arXiv:0704.111

s = (N(p')|5s|N(p)): relevant for nucleon structure and for
BSM implications (see J. Ellis, K. Olive, C. Savage arXiv:0801.365)



Challenging for experiment and theory
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Left: from Pate 2007, points are data, lines are model fits. Right: from Arrington,
Roberts and Zanotti 2006, curves are experimental bounds, points are various

model or lattice calculations.



Lattice calculation of the strange quark contribution

One should calculate

(NI N) =




Disconnected diagram calculation

For each gauge field configuration one must calculate separately
the propagators P, . (U; 2, y) which solve

[D(U)P(U)]es(x) = (2, y)dc,c0s,s

for the light and strange quarks. From the light quark propagators
one forms nucleon propagators (with implicit sums over color and
spin indices)

VP T % CE 0
Zf € 6Cl ,C2,C3 61762763@81 82,83\118/1)8/2785 Pclslacllsll (U7 Qj’ t7 07 t)
P0232,0’23’2 (Ua €, ta 07 _t)PC;gSg,CéSé (Ua X, ta 07 _t)

and from the strange quark propagators one calculates
Zg’ e’LQ'yTI-[P(U; y_)a 07 ga O)F]

Their product is then averaged over the gauge field configurations.



Challenges: a) The strange quark propagator insertion should be
calculated for every point of a time slice.

b) The “signal” is the result of a minute correlation between the
nucleon propagators and the ss insertions.



Stochastic source methods

Calculate x () which solves

(Dx)(x) =22, n(y)d(z,y); x(x) =2, Plz,y)n(y)

Average over a large number of 77 with

n*(x)n(y) = oz, y)
Then

2 M (@)X () = 2., P, )




Variance reduction: dilution

The stochastic source methods avoids the need of calculating a
separate propagator for each point of the time-slice, but can lead to
a high variance and therefore to the need of repeating the
calculation with vary many sources.

r ® Dilution: One does not populate all of
the time slice with sources, but only a
k & & =) subset of points. The increased

separation reduces the variance, but
® P one must repeat the calculation for all

the subsets.




Computational methodologies

Evaluate s1's on a single time
slice. Move the nucleon sources in

time. (our approach)

Evaluate SI's on a region
expanding in time, fit linearly in t.
cfr. S.J. Dong, K.F. Liu,

A.G. Williams, 1998

Evaluate sI's on all of space-time,
move the nucleon sources and take
finite differences. cfr. R. Lewis,

W. Wilcox, R.M. Woloshyn, 2002




Preliminary results

From research in progress with R. Babich, R. Brower, M. Clark,
G. Fleming, J. Osborn + D. Schaich

Results based on 863 gauge field configurations, with two flavors of
dynamical quarks (Wilson discretization), on anisotropic 24° x 64
lattices (@, = 0.108(7)fm, a; = 0.036(2)fm), with

m.. ~ 400NeV, generated by the LHPC collaboration.

B=55; x0 =238 k=1(2+6/x0 + 2m);

m = —0.4125 — m, = 400(36)MeV; m = —0.4086 — m, =
572(29)MeV;

weuse mg = —0.38922



Dilution

On each lattice configuration we evaluate the strange quark
propagators for all 12 color and spin values of sources placed within
the time slices att = 7, 23, 39, 65 and set on the diagonally
staggered vertices of a 43 spatial sublattice, with separation

6 x /3.

We invert 4 x 43/4 — 64 sources simultaneously, and perform
4 x 6% = 864(x12) inversions per configuration.

We do not use stochastic noise and rely on separation and gauge
variance to avoid non-diagonal contributions.

We calculate nucleon propagators with spread out quark sources at
a fixed space point and at all values of ¢.
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The nucleon propagator
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Scalar density
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Raw lattice results for the zero-momentum scalar density > .1 (7, 0).
Previous results on a 16% x 64 lattice are also shown.



Check of statistical significance
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The data points in blue have been obtained averaging the product of propagators
and scalar density on decorrelated configurations.



A physically motivated fit

Assume a two state contribution to the s1's matrix elements and a
two state plus backward propagating state to the nucleon
propagator. Then one would expect the data to exhibit a behavior

2 - —2mat . - % — -+ t 2 - —2 t
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where ¢, co, cp can be extracted from the nucleon propagator,

J1, J2, 71,2 are unknown matrix elements.



Thefit (over3 < (t —t')/a < 16)
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A two state fit
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Multigrid variance reduction

We need TrA—' = Avg, [77;[14_1771]

Introduce a restriction over a coarse lattice /> and the prolongator

PT. Let A be the projection of A over the coarse lattice. Using
TrPTA'P = TrA- PP = TrA 1

TrA™' = Avg, [nf (A" — PTA=1P)p;] + Tr A~

If A reproduces well the long range behavior of A, the variance of
the subtracted term can be substantially reduced, while the
calculation of Tr A" will be less computationally demanding.



Multigrid variance reduction

With afree (A = > VIV, +m?) ona 32* lattice:

m S Vo s’ NG

0.1  1.619 x 10° 1.932 x 102 4.012 x 10* 1.266 x 102
0.01 1.723 x 10° 1.000 x 10* 5.047 x 10* 1.281 x 102
0.001 1.162 x 10% 1.000 x 10% 1.040 x 105 1.281 x 102

where s = Avg, [n] A'1,] and o is its variance, s’ = TrA~! and
o’ is the variance of Avg, [/ (A~ — PTA-1P)n,].



Conclusions and future work

Our results indicate that progress in computer power and algorithms
have brought disconnected matrix elements within the realm of
calculable quantities.

We plan:

e to repeat the calculation on 24°% x 128 anisotropic lattices with
clover (S-W) fermions;

e use more elaborated nucleon wave-functions;

e implement multigrid variance reduction, if practical.



