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Nucleon form factors

〈N̄(p′)|jµ|N(p)〉 = ū(p′)
(
γµF1(q2) + ıσµνqνF2(q2)/(2M)

)
u(p)

GE(Q2 ≡ −q2) = F1(Q2)−Q2F2(Q2)/(4M2)

GM(Q2) = F1(Q2) + F2(Q2)

〈N̄(p′)|j5
µ|N(p)〉 = ū(p′)

(
γ5γµGA(Q2) + γ5qµGP (Q2)/M

)
u(p)

GE, GM , GA, GP determined from e− p and ν − p scattering

experiments at Jlab, Bates, BNL

see e.g. J. Arrington, C.D. Roberts, J.M. Zanotti nucl-th/0611050



Strange quark contribution to the form factors
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see e.g. Stephen Pate arXiv:0704.111

Gs
S = 〈N̄(p′)|s̄s|N(p)〉: relevant for nucleon structure and for

BSM implications (see J. Ellis, K. Olive, C. Savage arXiv:0801.365)



Challenging for experiment and theory
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FIG. 1: Results of this analysis for the strange vector and axial form factors of the proton. Open

circles are from a combination of HAPPEx and E734 data, while the closed circles are from a

combination of G0 and E734 data. [Open squares are from Ref. [8] and involve parity-violating !ep

data only.] The theoretical curves are from Ref. [26, 27, 28] (solid line), Ref. [31] (small-dotted

line), and Ref. [32] (big-dotted line). There is not any calculation of Gs
A from Ref. [32].
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Figure 8. The contours display the 68 and 95% confidence intervals from an analysis
[143] of Gps

E and Gps
M at Q2 = 0.1 GeV2, together with estimates of these quantities

from model calculations [144, 145, 146, 147, 148, 149, 150] and numerical simulations
of lattice-regularised QCD [151, 152, 153, 154]. Recent JLab measurements [13] not
included in [143] are overlaid for comparison: diagonal band – HAPPEx-H; horizontal
band – HAPPEx-4He. (Figure composed with assistance of R. D. Young.)

elements of light-front operators. It follows that accurate experimental measurements

and theoretical calculations of electromagnetic form factors can be used to place much-

needed stringent constraints on parametrisations of GPDs. With such parametrisations

in hand one can, e.g., estimate the contribution of quark spin and orbital angular

momentum to the light-front nucleon spin [96, 140, 141, 142].

3.4. Strangeness in the proton

As we described briefly in Sections 1.1 and 2.4, the s-quark contribution to the proton’s

form factors is accessible via parity violating electron scattering if one has accurately

determined Gp
E,M(Q2), Gn

E,M(Q2). Naturally, since the nucleon has no net strangeness,

Gps
E (0) = 0. However, there is no such simple constraint on either the sign or magnitude

of µp
s = Gps

M(0). In analogy with (17), a strangeness charge-radius can be defined via

〈r2
ps〉 = −6

dGps
E (Q2)

dQ2

∣∣∣∣∣
Q2=0

. (25)

In Figure 8 we provide a snapshot of the current status of experiment and theory

for the strange form factors of the proton. One model estimate lies within the

95% confidence limit [149]. It is inferred from a dispersion-relation fit to nucleon

Left: from Pate 2007, points are data, lines are model fits. Right: from Arrington,

Roberts and Zanotti 2006, curves are experimental bounds, points are various

model or lattice calculations.



Lattice calculation of the strange quark contribution

One should calculate

〈N |ψ̄sΓψs|N〉 =

limt→∞

P
~x,~y e

ı(~p·~x+~q·~y)〈ψψψ(~x,t) ψ̄sΓψs(~y,0) ψ̄ψ̄ψ̄(~0,−t)〉P
~x〈ψψψ(~x,t) ψ̄ψ̄ψ̄(~0,−t)〉 − 〈ψ̄sΓψs〉



Disconnected diagram calculation

For each gauge field configuration one must calculate separately

the propagators Pcs,c′s′(U ;x, y) which solve

[D(U)P (U)]cs(x) = δ(x, y)δc,c′δs,s′

for the light and strange quarks. From the light quark propagators

one forms nucleon propagators (with implicit sums over color and

spin indices)∑
~x e

ı~p·~xεc1,c2,c3εc′1,c′2,c′3Ψ
∗
s1,s2,s3

Ψs′1,s
′
2,s
′
3
Pc1s1,c′1s′1(U ; ~x, t,~0,−t)

Pc2s2,c′2s′2(U ; ~x, t,~0,−t)Pc3s3,c′3s′3(U ; ~x, t,~0,−t)
and from the strange quark propagators one calculates∑

~y e
ı~q·~yTr[P (U ; ~y, 0, ~y, 0)Γ]

Their product is then averaged over the gauge field configurations.



sΓs

NN

Challenges: a) The strange quark propagator insertion should be

calculated for every point of a time slice.

b) The “signal” is the result of a minute correlation between the

nucleon propagators and the s̄s insertions.



Stochastic source methods

Calculate χ(x) which solves

(Dχ)(x) =
∑

y η(y)δ(x, y); χ(x) =
∑

y P (x, y)η(y)

Average over a large number of η with

η∗(x)η(y) = δ(x, y)

Then∑
x η
∗(x)χ(x) =

∑
x P (x, x)



Variance reduction: dilution

The stochastic source methods avoids the need of calculating a

separate propagator for each point of the time-slice, but can lead to

a high variance and therefore to the need of repeating the

calculation with vary many sources.

Dilution: One does not populate all of

the time slice with sources, but only a

subset of points. The increased

separation reduces the variance, but

one must repeat the calculation for all

the subsets.



Computational methodologies

NN

Evaluate s̄Γs on a single time

slice. Move the nucleon sources in

time. (our approach)

NN

Evaluate s̄Γs on a region

expanding in time, fit linearly in t.

cfr. S.J. Dong, K.F. Liu,

A.G. Williams, 1998

NN

Evaluate s̄Γs on all of space-time,

move the nucleon sources and take

finite differences. cfr. R. Lewis,

W. Wilcox, R.M. Woloshyn, 2002



Preliminary results

From research in progress with R. Babich, R. Brower, M. Clark,

G. Fleming, J. Osborn + D. Schaich

Results based on 863 gauge field configurations, with two flavors of
dynamical quarks (Wilson discretization), on anisotropic 243 × 64
lattices (as = 0.108(7)fm, at = 0.036(2)fm), with
mπ ≈ 400MeV, generated by the LHPC collaboration.

β = 5.5; χ0 = 2.38; κ ≡ 1(2 + 6/χ0 + 2m);
m = −0.4125→ mπ = 400(36)MeV; m = −0.4086→ mπ =
572(29)MeV;
we use ms = −0.38922



Dilution

On each lattice configuration we evaluate the strange quark

propagators for all 12 color and spin values of sources placed within

the time slices at t = 7, 23, 39, 65 and set on the diagonally

staggered vertices of a 43 spatial sublattice, with separation

6×√3.

We invert 4× 43/4 = 64 sources simultaneously, and perform

4× 63 = 864(×12) inversions per configuration.

We do not use stochastic noise and rely on separation and gauge

variance to avoid non-diagonal contributions.

We calculate nucleon propagators with spread out quark sources at

a fixed space point and at all values of t.



The nucleon propagator
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Scalar density

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20

R
S

(t - t’)/a = (t’ - t0)/a

243 lattice
163 lattice

Raw lattice results for the zero-momentum scalar density
∑
~x ψ̄sψs(~x, 0).

Previous results on a 163 × 64 lattice are also shown.



Check of statistical significance
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The data points in blue have been obtained averaging the product of propagators

and scalar density on decorrelated configurations.



A physically motivated fit

Assume a two state contribution to the s̄Γs matrix elements and a

two state plus backward propagating state to the nucleon

propagator. Then one would expect the data to exhibit a behavior

RΓ ≈
c2

1j1e
−2m1t + c1c2(j1,2 + j∗1,2)e−(m1+m2)t + c2

2j2e
−2m2t

c2
1e
−2m1t + c2

2e
−2m2t + c2

Be
−2mB(L/2−t)

where c1, c2, cB can be extracted from the nucleon propagator,

j1, j2, j1,2 are unknown matrix elements.



The fit (over 3 ≤ (t− t′)/a ≤ 16)
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Results for the zero-momentum axial density
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A two state fit
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q2 dependence, scalar density
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q2 dependence, axial density
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q2 dependence, electric form factor
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Multigrid variance reduction

We need TrA−1 = Avgi [η
†
iA
−1ηi]

Introduce a restriction over a coarse lattice P and the prolongator

P †. Let Â be the projection of A over the coarse lattice. Using

TrP †Â−1P = TrÂ−1PP † = TrÂ−1:

TrA−1 = Avgi [η
†
i (A

−1 − P †Â−1P )ηi] + TrÂ−1

If Â reproduces well the long range behavior of A, the variance of

the subtracted term can be substantially reduced, while the

calculation of TrÂ−1 will be less computationally demanding.



Multigrid variance reduction

With a free (A =
∑

µ∇†µ∇µ +m2) on a 324 lattice:

m s
√
σ s′

√
σ
′

0.1 1.619× 105 1.932× 102 4.012× 104 1.266× 102

0.01 1.723× 105 1.000× 104 5.047× 104 1.281× 102

0.001 1.162× 106 1.000× 106 1.040× 106 1.281× 102

where s = Avgi [η
†
iA
−1ηi] and σ is its variance, s′ = TrÂ−1 and

σ′ is the variance of Avgi [η
†
i (A

−1 − P †Â−1P )ηi].



Conclusions and future work

Our results indicate that progress in computer power and algorithms

have brought disconnected matrix elements within the realm of

calculable quantities.

We plan:

• to repeat the calculation on 243 × 128 anisotropic lattices with

clover (S-W) fermions;

• use more elaborated nucleon wave-functions;

• implement multigrid variance reduction, if practical.


