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History—General

K. G. Wilson, Phys. Rev. D 3, 1818 (1971). ’Mass terms ...
must break a symmetry...’

G. ’t Hooft ’79
Q < Λ ∼ m/

√
λ

Composite scalars
L. Susskind, Phys. Rev. D 20, 2619 (1979)

m2 = m2
0 + Λ2P (λ0)

Fine tuning
L. Susskind, Phys. Rept. 104, 181 (1984)...Supersymmetry
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History—Practical

M. J. G. Veltman, Acta Phys. Polon. B 12, 437
(1981)...Veltman condition:

|m2 − m2
0| < m2

0

Λ ≈ 1.2 TeV. (Dimensional regularization)

R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63
(1988)... BG condition:
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Corrections

Leading order in λ0:

m2 = m2
0 + Λ2P (λ0)

Higer orders (previously considered):

P (λ0) → P (λ0, log(Λ/m0))

More important corrections involve higer powers of Λ2. For
example, there appears a contribution

λ3
0Λ

4/m2
0

The higer the order of perturbation theory in λ0, the higher
the powers of cutoff appearing in the expansion.
Resummation is needed.
Victor Kim & GP, arXiv:0712.0402 [hep-ph], PRD QUARKS ’08 – p. 4



All Order Evergreen Classics

In a different context, dependence on cutoff has been
studied to all orders of the perturbation theory in λ. General
theory of renormalization:

m2
0 = m2 − Λ2P (λ) +

(

γ(λ) log(Λ2/m2)
)

λ0 = λ + log(Λ2/m2)
β(λ)

2

The fact that higher powers of cutoff are not appearing in
the expressions for bare parameters in terms of physical
ones is a basic result of renormalization theory. Solving for
m2, λ returns series in λ0 involving higher powers of Λ2.
Resummation of higher powers of cutoff is effectively
performed within standard renoramlization programm.
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Are logs of Λ important?

Fine tuning argument neglects logs of Λ in the relation
between bare and physical parameters. First, are logs
important for Veltman condition

|m2 − m2
0| < m2

0?

Log of Λ makes the difference between λ and λ0. The
correct relation between bare and physical masses is

m2 = m2
0 + Λ2P (λ)

The leading behaviour of m2 in Λ is not affected by
neglecting the log. So, Veltman’s estimate for the scale of
new physics (Λ ≈ 1.2 TeV) is not qualitatively changed by
higher order corrections.
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Barbieri-Giudice Condition

∣

∣

∣

λ0

m2

∂m2

∂λ0

∣

∣

∣
< q

We need to express the derivative

∂m2

∂λ0

in terms of physical parameters and cutoff. Neglecting the
log yields

∂m2

∂λ0
= Λ2P ′(λ)

So, neglecting the logs results in the derivative growing as
Λ2.
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Jacobian matrix

More generally, we need to compute the Jacobian matrix

J =

(

∂λ
∂λ0

∂λ
∂m2

0

∂m2

∂λ0

∂m2

∂m2
0

)

Because we have expressions of bare parameters in terms
of physical, we have the inverse matrix:

J−1 =

(

∂λ0

∂λ
∂λ0

∂m2

∂m2
0

∂λ
∂m2

0

∂m2

)

It is
(

1 + log( Λ2

m2 )
β′(λ,g)

2 −β(λ,g)
2m2

−Λ2P ′(λ, g) 1

)
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Determinant

So, the desired Jacobian is

J = det(J)

(

1 β(λ,g)
2m2

Λ2P ′(λ, g) 1 + log( Λ2

m2 )
β′(λ,g)

2

)

The determinant is

det(J) =
1

− Λ2

m2 P ′(λ, g)β(λ,g)
2 + log( Λ2

m2 )
β′(λ,g)

2 + 1

We see that neglecting logs is equivalent to replacement

det(J) → 1

Thus, it leads to a qualitative mistake in esimating the
behaviour of the derivatives in bare parameters at large Λ
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Result

Finally, we obtain the Jacobian at large cutoff:
(

∂λ
∂λ0

∂λ
∂m2

0

∂m2

∂λ0

∂m2

∂m2
0

)

−−−−−→
Λ → ∞

(

0 0

− 2m2

β(λ) 0

)

This means that physical coupling exhibits universality, i.e.
it becomes independent of bare parameters in the limit of
infinite cutoff. The physical mass of a scalar does depend
on bare coupling, and the derivative has a finite continuum
limit.
We conclude that fine tuning problem is a problem of
leading order perturbation theory. Resummation of cutoff
powers removes the fine tuning problem.
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Application to Standard Model

BG condition takes now the form

|
2λ0

β(λ, g)
| < q

Using the scalar coupling beta-function of the Standard
Model, the relation between couplings, masses and Higgs
vev, and neglecting the difference between bare and
physical coupling, we obtain the inequality

4m2
Hv2

|p(mH ,mZ ,mW ,mt)|
<

3q

4π2 ,

where

p(mH ,mZ ,mW ,mt) = m4
H + m2

H(2m2
t − m2

Z − 2m2
W )

− 4m4
t + m4

Z + 2m4
W
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...Application to Standard Model

This polynomial of Higgs mass vanishes at mass value
about 200 GeV. Thus, at this value Higgs mass is very
sensitive to the value of bare Higgs selfcoupling. If we
forbid such sensitivity, moderate values of Higgs mass are
forbidden. For example,

q = 10 forbids interval [96 GeV . . . 540 GeV]

q = 15 forbids interval [113 GeV . . . 438 GeV]

q = 20 forbids interval [126 GeV . . . 380 GeV]
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Conclusions

1. There is no fine tuning problem in the theory of scalar
field. The physical selfcoupling of a scalar is independent of
bare parameters, while its physical mass depends on the
bare selfcoupling in the following way:

m2 = Λ2 exp
(

−
2(λ̄0 − λ0)

β(λ)

)

,

where λ̄0 is the value of bare coupling at which physical
mass equals Λ2.
2. At Λ ∼ 1.2 TeV about half of the Higgs mass squared
comes from radiative corrections. So, at TeV energies,
perturbation theory is not reliable.
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