<u>Subtleties in the quasi-classical</u> <u>`tunneling' calculation of</u> <u>Hawking radiation*</u>

Terry Pilling, North Dakota State University

Quarks 2008, May 23rd, 2008

*Work in collaboration with E.T. Akhmedov (ITEP), Doug Singleton (CSU Fresno)

<u>Overview</u>

- Hawking calculates temperature from looking at the asymptotic vacua
- Hawking radiation comes from tunneling?
- Semi-classical method and its problems
- Solution to the problems
- Connection to Black Hole thermodynamics

Hawking radiation from tunneling?

- Short answer: Not in the usual sense
 - The particle momentum is never imaginary
 - **So not a barrier penetration problem**
 - More like an `over-the-barrier' problem (Landau & Lifshitz vol.
 3)
 - imaginary part comes from continuing the path around the pole in p
 - Cauchy problem is ill-defined.
 Particles have to propagate <u>acausally</u> from behind the horizon. (however, the horizon is considered to move inward)
- Semi-classical Anzatz

$$\varphi \propto e^{-i\frac{S}{\hbar}}$$
 S=Et+S₀(q)

The original `tunneling' calculations

The Klein-Gordon equation for a scalar field φ of mass m in a curved spacetime is given by

$$\left[-\frac{\hbar^2}{\sqrt{-g}}\partial_{\mu}g^{\mu\nu}\sqrt{-g}\partial_{\nu}+m^2\right]\varphi=0$$

Plugging in the semi-classical anzatz gives, to zeroth order, the Hamilton-Jacobi equation for S

$$g^{\mu\nu}(\partial_{\mu}S)(\partial_{\nu}S)+m^{2}=0$$

$$\Gamma \propto e^{-2 \operatorname{Im} \int p_r dr} \equiv e^{-\beta E}$$

Problems appear...

- Parikh and Wilczek [prl 85, 5042 (2000)] showed that this formula gives the correct Hawking temperature for a Schwarzschild black hole in Painleve coordinates.
- We showed [E.T. Akhmedov, et. al, PLB, 642, 124 (2006); ibid. IJMPA, 22, 1705 (2007)] that their formula is coordinate dependent.
 - Gives twice the correct Hawking temperature in other coordinate systems!
 - The so-called `factor of two problem'
- On the other hand, B.D. Chowdhury [hep-th/0605197] noticed that the the formula is not canonically invariant. The correct formula should be instead:

$$\boldsymbol{\Gamma} = |\langle \boldsymbol{x}_f | \boldsymbol{x}_i \rangle|^2 = \langle \boldsymbol{x}_i | \boldsymbol{x}_f \rangle \langle \boldsymbol{x}_f | \boldsymbol{x}_i \rangle \propto \boldsymbol{e}^{-\mathsf{Im} \oint p_r dr}$$

But with the new formula there is a factor of two problem in all coordinates, including Painleve!

Problem solved

□ We then showed [V. Akhmedova, et. al, arXiv:0804.----; E.T. Akhmedov, et. al, arXiv:0805.----] that since the amplitude is really:

$$\Gamma \propto e^{\mathrm{Im}\Delta S} = e^{\mathrm{Im}(E \Delta t - \oint p_r dr)}$$

□ There is a previously un-noticed temporal component.

One can see using Kruskal coordinates that the closed path around the pole has a time contribution to the imaginary part (unlike QM):

$$t \rightarrow t - 4 \pi i M$$

So it is not the usual QM tunneling problem. The inverse temperature is therefore

$$\beta = 4\pi M + \text{Im} \oint p_r dr$$

First Law of Black Hole Thermodynamics

- □ We can now relate this result to Black Hole thermodynamics [T. Pilling, PLB 660, 402 (2008)].
 - The first law of BH thermodyamics is:

dM = T dS

□ Where S is the Bekenstein-Hawking entropy, equal to ¼ the area of the event horizon. Thus we can write

$$\beta = \frac{dS}{dM} = 2 \pi r_H \frac{dr_H}{dM}$$

The horizon radius can be written (in Schwarzschild coords) as

$$r_{H} = \frac{i}{2\pi} \oint \frac{dr}{g_{00}}$$

Temperature from BH Thermodynamics

□ Transforming this integral to arbitrary coordinates allows us to write the inverse temperature as

$$B = i \frac{dr_H}{dM} \oint \frac{\sqrt{-g}}{g_{00}} dr$$

Take another look at our quasi-classical result:

$$\beta = 4 \pi M + I m \oint p_r dr$$

□ For an arbitrary 2-d metric (-,+,+,+) the (outgoing/ingoing) canonical momentum is

$$p_r = -\frac{1}{g_{00}} \left[g_{01}E \pm \sqrt{-g} \left(E^2 + g_{00}m^2 \right) \right]$$

Quasi-classical result revisited

putting this into our quasi-classical expression for the inverse temperature:

$$\beta = 4\pi M - \frac{1}{E} \operatorname{Im} \oint \frac{1}{g_{00}} \Big[g_{01}E \pm \sqrt{-g} \Big(E^2 + g_{00}m^2 \Big) \Big] dr$$

Push the pole into the upper half plane and integrate around it

$$\frac{1}{g'_{00}(r_H)}\lim_{\varepsilon\to 0}\operatorname{Im}\left[\int_{r_i}^{r_f}\frac{g_{01}+\sqrt{-g}}{r-r_H-i\varepsilon}dr+\int_{r_f}^{r_i}\frac{g_{01}-\sqrt{-g}}{r-r_H-i\varepsilon}dr\right]$$

Notice that the off-diagonal terms cancel. This is why it also gives a facor of two for Painleve.

Comparing with BH Thermodynamics

Canceling the off-diagonal terms we can write the inverse temperature as

$$eta = 4\pi M + i \oint rac{\sqrt{-g}}{g_{00}} dr$$

Recall the BH thermodynamics result:

$$\beta = i \frac{dr_H}{dM} \oint \frac{\sqrt{-g}}{g_{00}} dr$$

- **This works in all stationary metrics!**
 - If M=0 and rH = 0, then dr/dM = 1 and the contribution is purely spatial (Unruh radiation)
 - Notice that since dr/dM = 2 for Schwarzschild we see by comparison that the temporal and the spatial parts contribute equally to the temperature.

Conclusion and Implications

- We see that BH thermodynamics and Quasi-classical `tunneling', with the new temporal contribution, give the same temperatures.
- The connection between them shows that one can compute the temperature in any of the following methods:
 - Twice the spatial part
 - **the factor of two problem.**
 - Temporal part plus spatial part
 - which is the `corrected' quasi-classical method.
 - **Twice the temporal part**
 - as originally found by Hartle and Hawking in 1976 by noticing the periodicity in euclidean time.
 - Using the simple thermodynamics formula