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Classically allowed and forbidden processes

Recently a new mechanism for tunneling has been discovered.
F. Bezrukov and D. Levkov, quant-ph/0301022
K. Takahashi and K.S. Ikeda, J. Phys. A 36, 7953 (2003);

Classically allowed transitions

All the trajectories corresponding to a given classically allowed process contribute almost
equally into the quantum amplitude, eiS/h̄.

The unstable trajectories constitute a set of zero measure in the phase space of any regular
system, accordingly, their contribution is vanishingly small.

Classically forbidden transitions

The contributions of different semiclassical trajectories into the amplitude are of
order e−ImS/h̄ ; they all are exponentially different.

Clearly, only one distinguished complex trajectory (or, rather, its small vicinity) saturates the
tunneling amplitude. This distinguished trajectory may well be unstable.
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What are the physical reasons of the new mechanism?

Necessary conditions for the new mechanism:

High energy

Multiple degrees of freedom

Classical transitions are dynamically forbidden

Nonlinear interaction between the degrees of freedom

Consider a system with the classical action in dimensionless units

S =
∫

dt
[

Ẋ2
2 + ẏ2

2 −V (X ,y)
]

, V (X ,y) = ω2y2

2 + e−(X+y)2/2 , ω = 1
2 .

We are interested in the transition from the left in a state with wave function |E, Ey〉 to the right.
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At some conditions it is preferable for
a particle to transfer some part of the
energy into translatory degree of freedom.
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Difficulties.

Difficulties of the semiclassical description of the sphaleron-driven process.

It’s not easy to find unstable solution numerically

There is a problem to describe semiclassically the subsequent decay of an
unstable intermediate state

The standard semiclassical expression leads to zero value for
pre-exponential factor
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ε–regularization technique

One inserts into the path integral for the amplitude of the process the unity factor

1 =
∫ +∞

0
dτ δ (Tint[~x]−τ) =

∫ +∞

0
dτ

∫ i∞

−i∞

idε
2π h̄ e−εTint[~x]/h̄+ετ/h̄ , Tint[~x] =

∫

dtV (~x)

It leads to an additional purely imaginary term in the equations of motion:

~̈x+(1− iε)~V ′(~x) = 0 .
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For the probability we obtain

P =

+∞
∫

0

dτ+√
π

√

− dε
dτ+

Aε e−Fε /h̄ , τ+ = Reτ = ReTint[~x]

Integrating over τ+, we obtain

P = h̄γ/2A(E,Ey)e−F(E,Ey)/h̄

Direct tunneling:
γ = 1

P = h̄ 1
2 Ae−F/h̄

Sphaleron-driven tunneling:
γ = 2

P = lim
ε→0

h̄Aε e−Fε /h̄

ε
√

−4π dτ+
dε
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Results

The semiclassical (line) and quantum–mechanical (points) results for the
suppression exponent F and the pre-exponential factor A plotted for Ey = 0.05.
Quantum–mechanical data we extrapolate to h̄ = 0 by fitting them with the
function

h̄ logPex(h̄) = −Fex +
γ
2 h̄ log h̄+ h̄ logAex + h̄2Cex
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Discussion

The method of ε–regularization allow us to study a different experimental signatures of the effect of
tunneling via unstable intermediate state

Increase in tunneling time as compared to the direct tunneling transition

The effect of spreading for the spectra with respect to final quantum numbers of a particles

(a) (b)

(a) The suppression exponent of tunneling into the exclusive final states with fixed oscillator energy
E f

y . The graphs are plotted for E = 0.98, E = 1.04 and E = 1.08; Ey = 0.05.
(b) For the initial quantum numbers E = 1.2, Ey = 0.05.
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