Status of the long baseline neutrino experiment T2K

Yury Kudenko Institute for Nuclear Research Moscow

(Representing the T2K Collaboration)

QUARKS2008, Sergiev Posad, Russia, 24 May 2008

OUTLINE

- Neutrino masses and mixings
- T2K physics
- Beam line
- Neutrino detectors
- Plan & Conclusion

T2K (Tokai to Kamioka) LBL neutrino experiment

T2K Collaboration

~400 collaborators from 12 Countries Canada, France, Germany, Italy, Japan, Korea, Poland, Russia, Spain, Switzerland, UK, US

T2K was approved in December 2003. Construction started in April 2004

Mixing matrix

Current status of masses and mixings

Solar + KamLAND

Mixing and masses: q's and v's

M.C.Gonzalez-Garcia, M.Maltoni, Phys.Rept.460:1-129,2008

Oscill ∆m ² ₁₂ (10 ⁻⁵ eV ²)	ation pa central va 7.67	Irameters lue 3σ interv 7.00 - 8.2	val 28		Global data from <i>solar</i> ,
$\Delta m_{31}^{2} (10^{-3} eV^{2})$ $\Delta m_{31}^{2} (10^{-3} eV^{2})$ $\theta_{12} (deg)$ $\theta_{23} (deg)$ $\theta_{13} (deg)$	2.37 2.46 34.5 42.3 0.0	1.94- 2.8 1.99- 2.8 30.0 - 38 34.6 - 53 0.0 - 12	3 (normal h 8 (inverted 3.5 3.6 .9	ierachy) hierachy)	<i>reactor,</i> <i>LBL accelerator</i> <i>experiments</i>
	Mixing 1-2 θ_{12} 2-3 θ_{23} 1-3 θ_{13}	Quarks 13° 2.3° ~ 0.5°	Leptons 34° 42° <13°		
U_{CKM}	$= \left(\begin{array}{c} 1\\ 0.2\\ 0.005\end{array}\right)$	$\begin{pmatrix} 0.2 & 0.005 \\ 1 & 0.04 \\ 0.04 & 1 \end{pmatrix}$	$U_{\nu} = \begin{pmatrix} 0.8\\ 0.4\\ 0.4 \end{pmatrix}$	$\left(\begin{array}{ccc} 0.5 & 7 \\ 0.6 & 0.7 \\ 0.6 & 0.7 \end{array} \right)$	

Long baseline accelerator experiments

2nd generation (off-axis v beam): T2K, NOvA (proposal)

LBL experiments cannot distinguish between Dirac and Majorana neutrinos do not provide information about absolute ν mass

T2K: off-axis beam

	JPARC	MINOS	Opera	K2K
E(GeV)	50	120	400	12
Int(10 ¹² ppp)	330	40	24	6
Rate (Hz)	0.29	0.53	0.17	0.45
Power (MW)	0.75	0.41	0.5	0.0052

Principle T2K goal (1): $v_{\mu} \rightarrow v_{e}$

Discovery of v_e appearance (θ_{13})

Search for CP violation In lepton sector

v_e appearance

• Look for excess events in 1-ring e-like sample at SK

Expected number of events at SK (0.75kW beam x 5years = 5x10²¹pot)

$sin^22\theta_{13}$	Bac	Signal		
	ν_{μ} induced	Beam v_e	Total	Signal
0.1	10	13	23	103
0.01	10			10

- Dominant background sources:
 - Beam v_e contamination
 - Irreducible
 - Neutrino-induced NC1 π^0 events
 - one of 2γ 's from π^0 is missed
 - Reducible, needs knowledge of $NC1\pi^0$ interaction
 - \rightarrow To be measured by Near Detector

Status of JPARC accelerators

Main Ring : 50 GeV (initially 30 GeV) $0.75MW \rightarrow 1x10^{21}$ pot/year

LINAC: successfully commissioned

- 181 MeV achieved in January 2007

3 GeV Synchrotron (RCS): successfully commissioned

- 3 GeV acceleration and extraction

achieved in October 2007

- 4.6 x 10¹² particles accelerated with 25 Hz (1 bunch)

→50 GeV Synchrotron Main Ring:

- Installation of accelerator components and vacuum system completed
- Commissioning just started in May 2008
- Aim to accelerate to 30 GeV in Dec. 2008
- Fast extraction to neutrino beamline in Apr. 2009

Neutrino Facility at JPARC

Primary proton beam line

superconducting magnets

normal conducting magnets

Arc section

Preparation section

construction will be completed by December 2008

Target and horns

Target

- graphite core: 26 mm (D) x 900 m (L)
- forced flow helium gas cooling in Ti-alloy capsule

assembly/installation will start in August 2008

Yury Kudenko

Secondary beam line

T2K far detector: SK-III

Completely reconstructed in April 2006 Data taking since Summer 2006

Near Detectors at 280m

Cross sections

(10⁴⁶ cm²) 3₀₀(v,+N→µ+X)E 0.8 At v energies 0.5-1.0 GeV 0.6 absolute cross sections 0.4 (CCQE) are measured with accuracy of 20-30% 0.2 Non-CCQE, 1π ... much worse E (GeV) T2K neutrino energies 1.4 u Cross-sections 5/E (10⁻³⁸cm²/GeV) 1.2 Total (CC+NC) Measurement of v 1 Total (CC) cross sections by ND280 0.8 is critical for T2K CC Quasi-elastic 0.6 CC DIS CC 1π 0.4 0.2 NC 1π 0 0.5 ٥ 1 1.5 3.5 4 4.5 5 2 2.5 з E.(GeV) Yury Kudenko **INR-Moscow**

oudan 2 Monte Carlo Cross Sections

SciBooNe and NA61

SciBooNE at FNAL

v cross section at sub GeV (~T2K) energies Collected 1. $46x10^{20}$ pot v: 9.2x10¹⁹ (goal: 1x10²⁰) anti-v: 5.4x10¹⁹ (goal: 1x10²⁰)

NA61(CERN): measurement of hadron production at JPARC energies

NA49 detector with some upgrade

Data analysis in progress

Yury Kudenko

INR-Moscow

ND280 hall

ND280 pit excavated

Carriages in the ND280 pit

UA1/NOMAD magnet

Refurbished at CERN in 2007 Shipped from CERN to JPARC in March 2008

Assembly at JPARC area to be completed in June 2008

Yury Kudenko INR

INR-Moscow

On-Axis Neutrino Monitor (INGRID)

Monitor the neutrino beam

- Direction
- Profile
- **Intensity (& Energy)**
- Iron-Scintillator sandwich detector: 16 modules
- Each module consists of
 - 10 Iron layers
 - 11 layers of extruded scintillator strips 1x5x100 cm³
 - 4 side veto planes
 - WLS fibers, Kuraray Y11 -
 - **MPPC** photosensor -

ND280m off-axis detector

- UA1 magnet
 0.2 T
 inner volume:
 3.5×3.6×7.0 m³
- Pi-Zero optimized for π^0 from NC
- Tracker optimized for CC studies
- surrounded by ECAL and Side Muon Range Detector

T2K photosensors

with WLS fibers

- Individual fiber readout

FGD, POD, Ecal, SMRD, INGRID: ~ 60000 readout channels

- Limited space for photosensors

- Magnetic field

ND280 photosensor: Multi-pixel Geiger mode avalanche photodiode MPPC (Hamamatsu, Japan)

Number of pixels Active area Pixel size Gain PDE at 525 nm Dark rate, th = 0.5 p.e.,22C Pulse width Cross-talk After pulses 667 1.3×1.3 mm 50×50 μm 0.5×106 30-35% <1 MHz <100 ns 10-20% 10-20%

Production on schedule: Feb08: start mass production May08: >20000 devices delivered

All FGD layers are manufactured, assembly in progress

Yury Kudenko INR-Moscow

 $\sigma(p)/p < 10 \%$ at 1 GeV/c /dx capability: separate e from µ

- 6 read-out planes (0.7x2.0 m²)
- Maximum drift distance 1.0 m
- B=0.2 T E=200V/cm
- Pad size: 8x8 mm²
- 100000 channels

Yury Kudenko

INR-Moscow

gas time projection chamber modules (TPC)

Gas amplification Micromegas

THREE TPC MODULES WITH TWO FGD UNITS FOR THE ND280 EXPERIMENT

3 TPC's

TPC

TPC

Prototype: MM1_001

95% Ar + 2% iC4H10 + 3%CF4 128 μm gap, gain 1000 ⁵⁵Fe 5.9 keV FWHM = 19%

Cosmic test of final prototype at HARP Field Cage

10X₀ Ecal around central detectors

- π^0 , γ detection
- Charged PID (e,π,μ)
- -Veto incoming particles

Sandwich: 1.75 mm (Pb)/1 cm scint WLS fiber readout

Scintillator bar

2x2 m² DS Ecal

28 layers, May 2008

SMRD detectors

Completion March 2009: Installation Summer 2009

> Y11 fibers embedded and glued

Wrapping into stainless steel foil

Preparation of S-grooves

MPPC

Yury Kudenko

INR-Moscow

ND280 status

- UA1/NOMAD magnet is refurbished and shipped to JPARC
 - assembly and installation in progress
- All ND280 subdetectors are in production (except for barrel ECAL)
- Installation in ND280 pit will start in early 2009
 - On-axis neutrino monitor will be completed by April 2009, to be ready for ν beam
 - Off-axis detector will be completed by fall 2009 to start data taking in the end of 2009

Plan & Conclusion

T2K is expected to provide very exiting physics primary goal: discovery of $v_{\mu} \rightarrow v_{e}$

Main features: off-axis intensive v_{μ} beam from JPARC, SuperK and ND280m Complex

J-PARC accelerator complex is being commissioned

Neutrino beam **April 2009** key system for beam commissioning **INGRID** will be ready to detect neutrinos

ND280m (off-axis) Summer 2009 installation in UA1/NOMAD magnet

Physics run

Fall 2009

ND280 starts data taking for oscillation and non-oscillation physics

First T2K result Summer 2010