BRST approach to Lagrangian
Construction for Massive Higher Spin Fields

Viadimir A. Krykhtin

Tomsk State Pedagogical University, Russia

Quarks 2008



The talk is based on

I.L. Buchbinder, V.A. Krykhtin

Gauge invariant Lagrangian construction for massive bosonic higher
spin fields in D dimentions, Nucl. Phys. B727 (2005) 536

I.L. Buchbinder, V.A. Krykhtin, L.L. Ryskina, H. Takata

Gauge invariant Lagrangian construction for massive higher spin
fermionic fields, Phys. Lett. B641 (2006) 386.

I.L. Buchbinder, V.A. Krykhtin, P.M. Lavrov

Gauge invariant Lagrangian formulation of higher massive bosonic
field theory on AdS space, Nucl. Phys. B762 (2007) 344.

I.L. Buchbinder, V.A. Krykhtin, A.A. Reshetnyak

BRST approach to Lagrangian construction for fermionic higher spin
fields in AdS space, Nucl. Phys. B787 (2007) 211.

I.L. Buchbinder, V.A. Krykhtin, H. Takata

Gauge invariant Lagrangian construction for massive bosonic mixed
symmetry higher spin fields, Phys. Lett. B656 (2007) 253.



Plan of the talk

1. Brief description of the procedure

2. Lagrangian construction for the bosonic fields in Minkowski space

3. Comments on Lagrangian construction for the fermionic fields in
Minkowski space

4. Comments on Lagrangian construction for the fields in AdS space

5. Comments on Lagrangian construction for the fields corresponding
to arbitrary Young tableau



BRST-BFV approach to gauge theories

LLagrangian is known

= We find Hamiltonian and constraints Ty, [T, T}] = foTe

— BRST-BFV charge is introduced according to the rule

1
Q = naTa+§nbn“f§b7’c, Q% =0,

where n and P, are canonically conjugate ghost variables.

— After quantization the BRST-BFV charge becomes a Hermitian
operator acting in extended space of states including ghost operators.
The physical states in the extended space are defined by the equation

QW) = 0.

Due to the nilpotency of the BRST-BFV operator, Q2 = 0,
the physical states are defined up to transformation

W) = |W) + QIA)
which is treated as a gauge transformation.



BRST-BFV approach to construction of Lagrangians

Application of BRST-BFV construction in the higher spin field theory
looks inverse to above quantization problem.

LLagrangian is unknown.
The initial point is equations defining the irreducible representations
of Poincare or AdS groups with definite spin and mass

— we construct BRST-BFV charge = we find Lagrangian




BRST-BFV approach to construction of Lagrangians

Generic procedure looks as follows.

The equations defining the irreducible representation are treated as the
operators of first class constraints in some auxiliary Fock space.

However a part of these constraints are non-Hermitian operators and in
order to construct a Hermitian BRST-BFV operator we have to involve
the operators which are Hermitian conjugate to the initial constraints
and which are not constraints.

Then for closing the algebra to the complete set of operators we must
add some more operators which are not constraints as well.

Because of presence of such operators (nonconstraints) the standard
BRST-BFV construction can not be applied it its literal form.

However, as we will see, this problem can be solved.



Masive bosonic field in Minkowski space

The totally symmetric tensor field ®,,...,,, describing the irreducible
Spin-s massive representation of the Poincare group must satisfy the
following constraints

(8% +m*)Ppypy =0, IPyypsep, =0, 2Py, = 0. (1)

In order to avoid manipulation with a number of indices it is conve-
nient to introduce Fock space generated by creation and annihilation
operators aj‘, ay (0 = 0,1,2,...,d — 1) satisfying the commutation
relations

[a,u,a;l_} = —Nuv, Nuy — (_I_a_)"')_)'



Then we define the operators (p, = —z’a%ﬂ)

lO — _p2 _I_ m27 ll — a"up/uh l2 — %CL'LLCLM.

These operators act on states in the Fock space

D) = Y bpyp(x)att Tk T 0) (2)
s=0

which describe all integer spin fields simultaneously if the following
constraints on the states take place

lo|®P) =0, l1|®) =0, l2|P) = 0. (3)

If constraints (3) are fulfilled for the general state (2) then equations
(1) are fulfilled for each component ®,,..,,(x) in (2) and hence the
relations (3) describe all free massive higher spin bosonic fields simul-
taneously.



In order to have real Lagrangian the BRST operator must be a Her-
mitian operator.

It means that the set of operators underlying the BRST operator must
1) be invariant under Hermitian conjugation
2) form an algebra [l;, [;] ~ 1.

In the case under consideration the constraint [g is Hermitian, laL = lp,
however the constraints [1, l» are not Hermitian.

We extend the set of the constraints lg, [1, [o adding two new operators

1
IT = a"tpy, I3 = gaw“:f- (4)

As a result, the set of operators lg, 1, lo, l"‘, lg‘ IS invariant under
Hermitian conjugation.



We want to point out that operators l"', lj’ are not constraints on
the space of ket-vectors (2) since they may not annihilate the phys-
ical states. Taking Hermitian conjugation of (3) we see that i, l;'
(together with ly) are constraints on the space of bra-vectors

(®llg = (®|I] = (dIF = 0. (5)

The set of the operators lg, (1, lf’, [, lg' does not form an algebra.

To get an algebra we add to the above set of operators all operators
generated by the commutators of [p, [q, li", [o, lé". Doing such a way
we obtain two new operators

m? and go = —aat + =. (6)



Let us emphasize once again that operators l"', lg' are not constraints
on the space of ket-vectors. The constraints in space of ket-vectors
are lpg, 11, l» and they are the first class constraints in this space.
Analogously, the constraints in space of bra-vectors are Ig, I7, lg' and
they also are the first class constraints but only in this space, not in
Space of ket-vectors.

Since the operator m? is obtained from the commutator
[11,13] = lg — m?, (7)

where [ is a constraint in the space of ket-vectors and li" IS @ constraint
in the space of bra-vectors, then m? can not be regarded as a constraint
neither in the ket-vector space nor in the bra-vector space.

Analogously the operator gg is obtained from the commutator

[i2,137] = go, (8)

where [» is a constraint in the space of ket-vectors and lj’ IS a constraint
in the space of bra-vectors. Therefore go can not also be regarded as a
constraint neither in the ket-vector space nor in the bra-vector space.



One can show that a straightforward use of BRST-BFV construc-
tion as if all the operators g, 1, o, l"", l"", go, m? are the first class
constraints doesn’t lead to the proper equations (3). This happens be-
cause among the above hermitian operators there are operators which
are not constraints (go and m? in the case under consideration) and
they bring two more equations (in addition to (3)) onto the physical
field (2).

Thus in order to reproduce equations of motion
lo|®) =0, l1|®) =0, Io|®) =0

we must somehow get rid of the supplementary equations generated
by Hermitian operators gg and m?2.

The method of avoiding the supplementary equations consists in con-
structing new enlarged expressions for the operators of the algebra, so
that the operators which are not constraints will not give any supple-
mentary equations on the physical field.

Let us act as follows.



We enlarge the representation space of the operator algebra by intro-
ducing additional (new) creation and annihilation operators and enlarge
expressions for the operators

li — Lij=1;+1, li = {lo, 11,17, 12,13, go, m?}

The enlarged operators must satisfy two conditions:

1) They must form an algebra [L;, L;] ~ Ly,

2) The operators which can’t be regarded as constraints must be zero
or contain arbitrary parameters whose values will be defined later from
the condition of reproducing the correct equations of motion.



In the case of higher spin fields in Minkowski space the algebra of the
operators is a Lie algebra

L, 1] = £75 1. (9)

Since we suppose to construct the additional parts of the operators l"i
in terms of new creation and annihilation operators and constants of
the theory then they shall be commute with the initial operators I;

[lfw ]] - O

T herefore we have

[Li, Ll = [l 1] + W, 0] = fELg — f50, + 11, 1]

and in order to provide [L;, L;] ~ Lj one must assume that

[lza ]] — fz] l/



There exists the method which allows us to construct explicit expres-
sions for the operators in terms of creation and annihilation operators
on the base of their algebra.

C. Burdik, Realizations Of The Real Simple Lie Algebras: The Method
Of Construction, J. Phys A: Math. Gen 18 (1985) 3101;

C. Burdik, A. Pashnev, M. Tsulaia, Auxiliary representations of Lie
algebras and the BRST constructions, Mod. Phys. Lett. A15 (2000)
281;

C. Burdik, O. Navratil, A. Pashnev, On the Fock Space Realizations
of Nonlinear Algebras Describing the High Spin Fields in AdS Spaces,
[hep-th/0206027].

Thus the problem of constructing of the additional parts for the non-
linear algebra (13) can be solved.



Explicit form of the additional parts

m'? = —m?, gb = b1 b1+ 3+ 23 by + b,
I = mb7, I = mbl, Ih =0,
z+ ~LvF2 4+ od lh = —3b7 + (b3 bo + h)bo.

[b1,b7] = [bo,63] = 1.

M2=m2—|—m/2=O G0=g0—l—96:h—|—...

Operators 1’2 and l’2+ are not mutualy conjugate. This makes the
BRST operator nonhermitian. In order to restore hermitian properties
of the operators we change the scalar product so that

(W1 Kplh|Wa) = (Wa| Kpl5T W)

Here Kj is an invertible operator acting as the unit operator in the
entire Fock space, but for the sector controlled by the auxiliary creation
and annihilation operators used at constructing the additional parts.



Now one need to define the arbitrary parameters.

For this we assume that the state vectors |W) in the extended Fock
space, including the ghost fields, is independent of the ghosts cor-
responding to the operators which are not constraints. Let us de-
note these ghost as ng, Pq corresponding to the extended operator
Go = g0 + g6. Thus PG|W> = 0.

Let us extract the dependence of the BRST-BFV operator on the
ghosts nag, Pa

Q" = Q+nalo+h) —ndnPg

where o + h = (GG + ghost fields, with h being the arbitrary parameter
to be defined. After this the equation on the physical states in the
BRST-BFV approach Q'|W) = 0 yields two equations

QW) =0, (o 4+ h)|W) = 0. (10)

10 whereas
the first equation is equation on the physical state.



The possible values of A

d—5
—h = n—|—7, n=20,1,2,... .

The numbers n are related with the spin s of the corresponding eigen-
vectors as s = n.

Let us denote the eigenvectors of the operator o corresponding to the
eigenvalues n + d_75 as |W)p

oWy, = <n—|—d_75> Wn.

The solutions to the system of equations (10) are enumerated by n =
0,1,2,... and satisfy the equations

Qs|V)s = 0, (11)

where in the BRST operator we substituted s + d_T5 instead of —h.



This equation of motion (11) can be obtained from the Lagrangian

~ Ls = [dno s(W|KsQs|W)s. (12)

These Lagrangian (12) and equation of motion (11) are invariant under
the reducible gauge transformation

0| W)s = Qs|A\)s, gh(|/\>8) = —1,
6|\)s = Qs[€2)s, gh(|Q2)s) = —2.

Since it is not possible to write the state vector with ghost number —3
the order of reducibility of the theory is one.



Lagrangian construction for the fermionic fields

The Lagrangian construction for the fermionic higher spin theories have
two specific differences compared to the bosonic ones and demands
some comments.

One of the specific features consists in that we have the fermionic
operators in the algebra of constraints and corresponding them the
pbosonic ghosts. We can write these ghosts in any power in the Fock
space states. Therefore the states in the Fock space can have any
ghost number. As a result the resulting theory will be a gauge theory
where the order of reducibility grows with the spin of the field.

Another specific features is that in the fermionic theory we must obtain
Lagrangian which is linear in derivatives. But if we try to construct La-
grangian similar to the bosonic case (12) we obtain Lagrangian which
has the second order in derivatives. To overcome this problem one first
partially fixes the gauge and partially solves some field equations. Then
the obtained equations are still Lagrangian and thus we can derive the
correct Lagrangian.



Lagrangian construction for the fields in AdS

The main difference of the Lagrangian construction in AdS space is
that the algebra generated by the constraints is nonlinear, but it has a
special structure

(1, 5] = £l + £ dm, (13)

where fz-"; fkm are constants. The constants f’“m are proportional to
the scalar curvature and disappear in the flat |Imlt.

1) The algebra of the enlaged operators is changed in comparison with
the algebra of the initial operators (13)

with the additional parts satisfying the algebra additional parts

(1,0 = f50,— FEm,



2) The BRST-BFV operator is defined unambiguously.

T he construction of BRST-BFV operator is based on following general
principles:

1. The BRST operator Q' is Hermitian, Q't = @Q’, and nilpotent,
Q% =0.

2. The BRST operator Q' is built using a set of first class constraints.
In the case under consideration the operators Lo, L1, Li", Lo, L"‘, Go
are used as a set of such constraints.

3. The BRST operator Q' satisfies the special initial condition

Q' ey noLo 4+ ny L1 +mLT +n3 Lo+ noLd + neGo.



Straightforward calculation of the commutators allows us to find the
algebra of the enlarged operators. In particular we get the following
commutation relations

[L1,Lg) = —6rLy —8rl Lo —8ri5LT — 4rl}Gg — 4rghLy
+8rLi Ly + 4rGoLy,
(Lo, LT] = —6rLy —8ri5t Ly —8rli LT — 4rlF G — 4rghL7

+8rLd Ly + 4rL] Go.

All possible ways to order the operators in the right hand sides are
described in terms of arbitrary parameters &1, &2, &3, £&4. T he arbitrari-
ness in the BRST operator stipulated by the parameters ¢; is resulted
in arbitrariness of introducing the auxiliary fields in the Lagrangians
and hence does not affect the dynamics of the basic field.



Fields corresponding to an arbitrary Young tableau

Let us consider the Lagrangian construction for the fields with index

symmetry corresponding to Young tableau with 2 rows (s1 > s5)

H1

H2

Hsq

Doy, v1-vs, (T)

!

V2

The tensor field is symmetric with respect to permutation of each type
of the indices Py ...pugy, vy s, (T) = Cb(m---usl),(V1---V32)(x) and in addition
must satisfy the following equations

(82 4+ M) Py iy, vy s, () = 0,

8M1¢M1M817ylys2(w) — aquD/,Ll/,le,VlVSQ(:U) — 07

K12
Ui Dy po sy, v1-+vsy

qD(Ml"'Msla V1) Vs, (x

- 1%

) = 0.

202 —
/'7 ¢M1-00M81,’/1y2...1/82 —

O,

(14)

(15)

(16)

(17)



Then we define Fock space generated by creation and annihilation
operators

[ 57 +V] - _77“]/5’&]7 UW/ — d’LCLg(-'-, B 7_) 7’7] — 172(18>
]

The number of pairs of creation and annihilation operators one should
introduce is determined by the number of rows in the Young tableau
corresponding to the symmetry of the tensor field. Thus we introduce
two pairs of such operators. An arbitrary state vector in this Fock
space has the form

oo

©@,
+ +ups, 4+ +vs
|q>> p— Z Z CDHl/*LSl)VlVSQ(m) a/1 Ml"°a/1 1a2 Vl,_-a,2 2|O>.
31:0 8220



To get the equations (14)—(17) on the coefficient functions we intro-
duce the following operators

1
lo=—p'pu+m? Li=alpy, lj=alaj, g12= —a]"ap, (19)

One can check that restrictions (14)—(17) are equivalent to

respectively.

Now we can generalize this construction to the fields corresponding
to k-row Young tableau. For this purpose one should introduce Fock
space generated by k pairs of creation and annihilation operators (18),
wherei,7 = 1,2,...,k, and then introduce operators (19), but now with
i, =1,2,...,k. Operator g5 is generalized to operator g;; = —a,zl_“aju
where 1 < j.



Summary

We have considered the basic principles of gauge invariant Lagrangian
construction for massive higher spin fields.

This method can be applied to any free higher spin field model in
Minkowski and AdS spaces.

T he construction is also applied to tensor higher spin fields with index
symmetry corresponding to a multirow Young tableau.

No off-shell constraints on the fields and gauge parameters are im-
posed.

The Lagrangians obtained possess a reducible gauge invariance and
for the fermionic fields the order of reducibility grows with value of the
spin.



