

KamLAND results & prospects

Alexandre Kozlov Institute for the Physics and Mathematics of the Universe The University of Tokyo (The KamLAND Collaboration)

QUARKS-2008 Sergiev Posad, RUSSIA, 23-29 May, 2008

Reactor anti-neutrino signal at KamLAND

Time variation of the number of expected anti- ν events assuming no oscillation

The anti-neutrino data analysis

The Prompt-Delayed pairs (from $\nu + p \rightarrow n + e^+$ and backgrounds) separated by $\Delta T < 1 m s$, and $\Delta R < 2m$ are shown. Variable selection criteria suppress *accidentals* making combined analysis using a full **0.9-8.5MeV** energy range and enlarged **6m** fiducial volume possible.

Selection of anti-neutrino events

PDF for **accidental coincidence** events is constructed using off-time window (10ms-20s) as $facc(R_p, R_d, E_d, \Delta T, \Delta R)$. PDF for **anti-v signal (fs)** is created using Monte-Carlo simulation. For each candidate pair ratio = fs/(facc+fs) is calculated and used to select signal-like events. As a result, detection efficiency below 3MeV is getting lower than for box cuts.

Selection of anti-neutrino events

Distribution of anti-neutrino events in KamLAND

The **red (black)** points show vertex location of Prompt (left) & Delayed (right) events **with** and **without** the likelihood selection cut. **Anti–v** events are distributed *uniformly*, while majority of accidentals are located *near the balloon edge*.

Estimation of the fiducial volume uncertainty

Off-axis calibration system was used to deploy 241 Am⁹Be, 210 Po¹³C, 60 C, 68 Ge, and 203 Hg sources into KamLAND and study vertex reconstruction biases at distances up to 5.5m away from the detector center. We found that the event vertex fitter reconstructs event's position with a bias < 3cm within the 5.5m volume which corresponds to 1.6% systematic error.

The 6m fiducial volume (FV) uncertainty, 1.8%, was determined by using the off-axis calibration data and uniformly distributed μ -induced β -emitter ¹²B events. For comparison, the 4.7% FV uncertainty was used for the 2nd KamLAND result.

Estimation of the expected (α,n) background

e⁻**e**⁺ from 1st exc. st. are absorbed in the source material

energy using a neutron generator.

The anti-neutrino energy spectrum

Data taken between March 9, 2002 and May12, 2007, the 2.44×10^{32} proton-year exposure is used. This is KamLAND only result (using $\theta_{13}=0$ and taking into account reactor flux time variation). Scaled reactor spectrum with no oscillations included is excluded at a 5.1 σ level.

<u>The L₀/E_v oscillation plot (L₀=180km)</u>

The KamLAND and CHOOZ data plotted as (Data - BG)/(Exp), where Data is number of observed events, Exp is number of expected in no oscillation case, BG is number of expected background events including geo-neutrinos.

The L₀/E_v oscillation plot: LMA I, 0, II vs data

The 2nd KamLAND result was obtained for the $E_v > 3.4$ MeV to avoid the geo-v background, while data below 3.4MeV has a power to distinguish between different LMA regions. New analysis excluded alternative solutions (LMA 0, LMA II) by more than 4σ .

The Δm^2 result remains the same if three neutrino oscillation is considered, while uncertainty for θ_{12} is getting slightly larger

KamLAND + Solar oscillation analysis

KamLAND only:

 $\Delta m^{2} = 7.58^{+0.14}_{-0.13}(st) \pm 0.15(syst) \cdot 10^{-5} (eV^{2})$ $tan^{2}\theta = 0.56^{+0.10}_{-0.07}(st)^{+0.1}_{-0.06}(syst)$

<u>KamLAND+solar:</u>

 $\Delta m^2 = 7.59 \pm 0.21 \cdot 10^{-5} (eV^2)$

 $\tan^2 \theta = 0.47^{+0.06}_{-0.05}$

Only LMA I remains

KamLAND improved result for mixing angle and Δm^2 . Solar data have no effect on the Δm^2 measurement.

Expected geo-neutrino signal at KamLAND

Area within 500km gives $\frac{1}{2}$ of the total expected geo v flux at the KamLAND location.

Geo-neutrinos carry information about the <u>absolute amount</u> and <u>distribution</u> of the U/Th/K in the crust, mantle and core. This information may help to understand mechanisms of Earth formation, and its dynamics.

The second geo-neutrino result

The Th/U mass ratio was fixed at 3.9. Number of geo-neutrinos, 73 ± 27 , corresponds to flux $(4.4 \pm 1.6) \times 10^{6} (\text{cm}^{-2} \text{ s}^{-1})$. This result is consistent with the reference Earth model which predicts flux $2.24 \times 10^{6} (\text{cm}^{-2} \text{ s}^{-1})$ for U (56.6 events) and $1.9 \times 10^{6} (\text{cm}^{-2} \text{ s}^{-1})$ for Th (13.1 events) assuming 16 TW of the radiogenic heat. Reference Earth model: S. Enomoto *et al*, Earth Planet Sci Lett. 258,147 (2007)

Solar neutrino background before start of distillation

KamLAND Purification System

N₂generator

- Distillation goal is to remove ²¹⁰Pb, ⁴⁰K, and Th/U
- pure N_2 purge goal is to remove ⁸⁵Kr, ³⁹Ar, and ²²²Rn

Purified scintillator

Background reduction after the 1st stage of purification

About 1700m³ of the KamLAND scintillator were purified last year. Due to mixing between purified and non-purified scintillator purification effect is smaller than needed for the ⁷Be observation. The upper part of the detector is filled with scintillator after a 2nd pass through the system. The 2nd purification campaign started 2 weeks ago and will continue for 6 month.

The current status of KamLAND

Detector upgrade towards the solar neutrino detection

95% of the ¹¹C nuclei are produced in ¹²C+ μ →¹¹C+n reaction. Detection of the neutron after muon should allow to veto a small part of the detector volume until ¹¹C decays and reduce background for measurement of the pep and CNO solar neutrinos. Technique was successfully tested in KamLAND but new electronics is needed to improve veto efficiency.

A new <u>deadtime-free</u> data acquisition electronics was developed for the solar pep/CNO neutrino observation with KamLAND. It aims to detect all neutrons produced by muons. The number of neutrons after a muon can reach 60~100, and therefore capability of collecting multiple signals is crucial.

Sensitivity to the SN neutrinos after purification

The proton-recoil energy spectrum in KamLAND from SN (3×10^{53} ergs) at 10kpc from PRD **66**, 033001 (2002). Background reduction at the low energy region, a large detector mass, and high H/C ratio makes KamLAND a unique tool for the SN neutrino detection.

KamLAND as 0vββ detector

The central region of KamLAND provides very clean environment free from the external γ -ray background. It can be used to accommodate a large scale ¹³⁶Xe 0 $\beta\beta\nu$ experiment which is going to be the next physics goal of KamLAND. As a first stage we plan to load 200kg of enriched isotope, and then ≥ 1000 kg as a second stage.

Conclusion

- The "reactor-v" phase has been completed with 4.1 years of the detector livetime. The new PRL paper was accepted for publication on May 19 2008.
- KamLAND measured $\Delta m^2 = 7.59 \pm 0.21 \times 10^{-5} (eV^2)$
- KamLAND improved precision of the measurement of $\theta_{12} \approx 35$ degrees
- The 2nd purification campaign has been started. Distillation system was improved, measures to avoid mixing between purified and non-purified scintillator were taken.
- Main physics goals after the purification: ⁷Be, CNO+*pep* solar neutrinos, continuation of geo-v detection, new window for the SN neutrinos detection (via the proton recoil)
- After the solar neutrino phase search for the neutrinoless double β -decay will be started in 2 stages: first 200kg as a prototype, and then ≥ 1000 kg of enriched isotope ¹³⁶Xe.