Is gravitino still a warm dark matter candidate?

A. Khmelnitsky

Faculty of Physics, M.V.Lomonosov Moscow State University

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

15th International Seminar on High Energy Physics, Quarks-2008 Sergiev Posad, Russia, May 23-29, 2008

with D. Gorbunov and V. Rubakov

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CDM Issues

Cold Dark Matter Consistent with Bulk of Cosmological Data BUT

• Some Discrepancies are Observed

- Missing Satellites: CDM Predicts too Many Satellite Dwarf Galaxies
- Cuspy Galactic Density Profiles
- Too Low Angular Momenta of Spiral Galaxies
- Possible Hints towards Warm Dark Matter
- WDM: Sizeable Primordial Velocity Dispersions of DM Particles
 - Another way to quantify: Phase space density

CDM Issues

• Cold Dark Matter Consistent with Bulk of Cosmological Data

BUT

- Some Discrepancies are Observed
 - Missing Satellites: CDM Predicts too Many Satellite Dwarf Galaxies
 - Cuspy Galactic Density Profiles
 - Too Low Angular Momenta of Spiral Galaxies
- Possible Hints towards Warm Dark Matter
- WDM: Sizeable Primordial Velocity Dispersions of DM Particles
 - Another way to quantify: Phase space density

CDM Issues

Simulation of structure formation in CDM and WDM scenarios with various masses of DM particles (P. Bode, J. P. Ostriker and N. Turok, 2001)

CDM Issues

• Cold Dark Matter Consistent with Bulk of Cosmological Data

BUT

- Some Discrepancies are Observed
 - Missing Satellites: CDM Predicts too Many Satellite Dwarf Galaxies
 - Cuspy Galactic Density Profiles
 - Too Low Angular Momenta of Spiral Galaxies
- Possible Hints towards Warm Dark Matter
- WDM: Sizeable Primordial Velocity Dispersions of DM Particles
 - Another way to quantify: Phase space density

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CDM Issues

• Derived inner mass distributions for six dSph galaxies (G. Gilmore et al., 2007)

CDM Issues

• Cold Dark Matter Consistent with Bulk of Cosmological Data

BUT

- Some Discrepancies are Observed
 - Missing Satellites: CDM Predicts too Many Satellite Dwarf Galaxies
 - Cuspy Galactic Density Profiles
 - Too Low Angular Momenta of Spiral Galaxies
- Possible Hints towards Warm Dark Matter
- WDM: Sizeable Primordial Velocity Dispersions of DM Particles
 - Another way to quantify: Phase space density

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Phase space density

Thus

• Measurable quantity

$$Q = rac{
ho}{\langle v_{radial}^2
angle^{3/2}}$$
 $Q pprox 5 \cdot 10^{-3} \, rac{M_\odot/\mathrm{pc}^3}{(\mathrm{km/s})^3}$

• Estimates typical value of halo particles distribution function

$$Q \simeq m^{4} \cdot \frac{n}{\langle \frac{1}{3}p^{2} \rangle^{3/2}}$$
$$\frac{n}{\langle p^{2} \rangle^{3/2}} = \frac{\left[\int f_{halo}(\mathbf{p}, \mathbf{r}) d^{3}\mathbf{p}\right]^{5/2}}{\left[\int f_{halo}(\mathbf{p}, \mathbf{r}) \mathbf{p}^{2} d^{3}\mathbf{p}\right]^{3/2}} \sim f_{halo}(p_{*}, \mathbf{r})$$

$$f_{halo}\simeq rac{Q}{3^{3/2}m^4}$$

Warmness Condition

- In course of evolution particles leave dense regions of phase-space
 - \Rightarrow $Q \Leftrightarrow f$ decreases by a factor of $\Delta = 10^2 10^3$
- But only a fraction of dark matter particles should have high phase space density

$$u\simeq\Omega_{
m dSph}/\Omega_{
m DM}\sim10^{-5}$$

• WDM: Fraction ν of particles has primordial phase space density

$$f \simeq \Delta \cdot \frac{Q}{3^{3/2} m^4}$$

Warmness Condition

- In course of evolution particles leave dense regions of phase-space
 - \Rightarrow $Q \Leftrightarrow f$ decreases by a factor of $\Delta = 10^2 10^3$
- But only a fraction of dark matter particles should have high phase space density

$$u\simeq\Omega_{
m dSph}/\Omega_{
m DM}\sim10^{-5}$$

• WDM: Fraction ν of particles has primordial phase space density

$$f \simeq \Delta \cdot \frac{Q}{3^{3/2} m^4}$$

Warmness Condition

- In course of evolution particles leave dense regions of phase-space
 - \Rightarrow $Q \Leftrightarrow f$ decreases by a factor of $\Delta = 10^2 10^3$
- But only a fraction of dark matter particles should have high phase space density

$$u\simeq\Omega_{
m dSph}/\Omega_{
m DM}\sim10^{-5}$$

• WDM: Fraction ν of particles has primordial phase space density

$$f\simeq \Delta \cdot rac{Q}{3^{3/2} \ m^4}$$

Light gravitinos as Warm Dark Matter

Two production channels

Gravitino mass in keV range ⇒ Low reheat temperature
 Decay processes:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Production in decays

• Decay rate:

$$-\simeq {M^5\over 6m^2_{\widetilde{G}}M^2_{
m Pl}}$$

Total present mass density:

$$\Omega_{\tilde{G}}^{
m dec} pprox 8 \cdot 10^{-4} \left(g_b + rac{15}{16} g_f
ight) \left(rac{g_{
m MSSM}}{g_*}
ight)^{3/2} \left(rac{1 \ {
m keV}}{m_{ ilde{G}}}
ight) \left(rac{M}{100 \ {
m GeV}}
ight)^3$$

- Largest contribution comes from heaviest superparticles
- Superparticles mass in 100 GeV range

Gravitino from decays spectrum

- Feature at low reheat temperature
- Gravitino from decays are "colder" than thermal:
 - Mean momentum is lower
 - Phase space density is higher

Two scenarios are considered

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Two scenarios are considered

Allowed region is too small

Results and Conclusion

We find that gravitino is warm dark matter provided that

• its mass is in range

$$1\,{
m keV} \lesssim m_{ ilde{G}} \lesssim 25\,\,{
m keV}$$

- T_R is at most in the TeV range
- superparticles whose mass *M* is below the reheat temperature obeys

$$M \lesssim 350 {
m GeV}$$

• Gravitino as warm dark matter candidate will soon be either ruled out or supported by the LHC experiments.

Results and Conclusion

We find that gravitino is warm dark matter provided that

• its mass is in range

$$1\,{
m keV} \lesssim m_{ ilde{G}} \lesssim 25\,\,{
m keV}$$

- T_R is at most in the TeV range
- superparticles whose mass *M* is below the reheat temperature obeys

$$M \lesssim 350 \,\, {
m GeV}$$

• Gravitino as warm dark matter candidate will soon be either ruled out or supported by the LHC experiments.