
Higgs boson decay width into bottom quarks:

higher-order QCD corrections and their

resummations

Andrei L. Kataev & Victor T. Kim

(INR, Moscow) (PNPI, Gatchina)

Abstract

The dominant channel of Higgs boson decay H → bb for

MH < 2MW ' 160 GeV is briefly reviewed. The perturbative

QCD-corrections of higher orders up to (α4
S) are considered.

Various approaches for resummation of the QCD-corrections are

discussed. An estimate for uncertainties of the theoretical

approximations for width decay ΓHbb is given.
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Outline:

• Introduction

• Perturbative corrections to Higgs boson decay H → bb

• Some approaches of resummation of QCD corrections

• Summary
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LEP and Tevatron fit: MH = 76+33
−24 GeV C.L. 68%

MH ≤ 144 GeV C.L. 95% (without LEP-II)
MH ≤ 182 GeV C.L. 95% (with LEP-II)

LEP-II direct search: MH ≥ 114.4 GeV C.L. 95%
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Tevatron:
can reach in 2010(?) MH ' 160 GeV
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LHC: ATLAS, CMS, Diffraction: CMS-TOTEM, US-British
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Main quantity under study Γ(H0 → bb)= =ΓHbb with the mass
115 GeV ≤ MH ≤ 2MW , calculated in the MS up to the α4

s

corrections.

This decay mode is dominating in the sum of decay widths, and
thus is dominating in the branching ratio of Higgs to γγ.

What is theoretical error of ΓHbb?
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1. consideration in MS-scheme and mb-on shell [Kataev & VK
(93-94,07)]

2. αs(MH) and mb(MH) MS-scheme; calculated up to α4
s-level;

(α4
s massless term- [Gorishny, Kataev, Larin,

Surguladze (91) – Baikov,Chetyrkin & Kuhn (06)]

3. invariant mass m̂b, the resummation of effects of analytic
continuation within in β0 approximation definition of special
parameters in every order of PT (analog of [Shirkov &
Solovtsev (96)] analytized perturbation theory) with
fractional power of αs, i.e. ν0= 2γ0/β0, γ0-first coefficient of
anomalous dimension function [Broadhurst, Kataev &
Maxwell (01)]

4. invariant mass m̂b, the resummation of effects of analytic
continuation within analytized perturbation theory with
fractional power [Bakulev, Mikhailov & Stefanis (07)]
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Some definitions in terms of

ΓHbb = Γb
0

(
β3[1+∆ΓNLOas+∆ΓNNLOa2

s+∆ΓN3LOa3
s+∆ΓN4LOa4

s

)

(1)

Γb
0 =

3
√

2
8π

GF MHm2
b , as ≡ αs/π , β =

√
1− 4m2

b

M2
H

(2)

∆ΓNLO =
4
3
β2A(β) +

3 + 34β2 − 13β4

16
ln

(1 + β)
(1− β)

+ β
3(−1 + 7β2)

8
(3)

A(β) = (1+β2)
[
4Li2

(
1− β

1 + β

)
+2Li2

(
−1− β

1 + β

)
−3 ln

2
1 + β

ln
1 + β

1− β
(4)

−2 ln
1 + β

1− β
ln β

]
− 3β ln

4
1− β2

− 4β ln β (5)

Li2(x)=
∫ x

0
(dt/t) ln(1− t), only massive dependence of

∆ΓNNLO-term is known up to m2
b/M

2
H [Kataev & VK (93-94)]
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The relation of the mb-pole case with mb(MH)-case and as(MH) is

ΓHbb = Γ(b)
0

mb
2

m2
b

(
1 + ∆Γ1as + ∆Γ2a

2
s + ∆Γ3a

3
s + ∆Γ4a

4
s

)
.(6)

m2
b(MH) = m2

b(mb)exp
[
− 2

∫ αs(MH)

αs(mb)

γm(x)
β(x)

dx
]

,where (7)

µ2 das

dµ2
= β(a) = −β0a

2
s−β1a

3
s−β2a

4
s−β3a

5
s−βPade

4 a6
s +O(a7

s) (8)

dlnmb

dlnµ2
= γm(as) = −γ0as − γ1a

2
s − γ2a

3
s − γ3a

4
s − γmPade

4 a5
s + O(a6

s)

(9)

m2
b(MH) = m2

b(mb)
(

as(MH)
as(mb)

)2γ0/β0
[

AD(as(µ))
AD(as(mb))

]2

(10)
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AD(as) =
[
1 + P1as +

(
P 2

1 + P2

)
a2

s

2
+

(
1
2
P 3

1 +
3
2
P1P2 + P3

)
a3

s

3

+
(

1
6
P 4

1 +
4
3
P1P3 + P 2

1 P2 + P4

)
a4

s

4

]

P1 = −β1γ0

β2
0

+
γ1

β0
, P2 =

γ0

β2
0

(
β2

1

β0
− β2

)
− β1γ1

β2
0

+
γ2

β0
(11)

P3 =
[
β1β2

β0
− β1

β0

(
β2

1

β0
− β2

)
− β3

]
γ0

β2
0

+
γ1

β2
0

(
β2

1

β0
− β2

)
− β1γ2

β2
0

+
γ3

β0

P4 =
γ0

β4
0

[
β2

1

β2
0

(
β2

1

β0
− β2) +

β2
2

β0
− 2β1

β0

(
β1β2

β0
− β3

)
− βPade

4

]

+
γ1

β2
0

[
β1β2

β0
− β1

β0

(
β2

1

β0
− β2

)
− β3

]

+
γ2

β2
0

(
β2

1

β0
− β2

)
− γ3β1

β2
0

+
γmPade
4

β0
(12)
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The basic formula in terms of mb(MH) and as(MH) for Nf=5:

ΓHbb = Γ(b)
0

mb
2

m2
b

[(
1 + ∆Γ1as + ∆Γ2a

2
s + ∆Γ3a

3
s + ∆Γ4a

4
s

)
(13)

∆Γ1 =
17
3

= 5.667 , ∆Γ2 = dE
2 − γ0(β0 + 2γ0)π2/3 = 29.147

∆Γ3 = dE
3 −

[
d1(β0 + γ0)(β0 + 2γ0) + β1γ0 + 2γ1(β0 + 2γ0)

]
π2/3 = 41.178

∆Γ4 = dE
4 −

[
d2(β0 + γ0)(3β0 + 2γ0) + d1β1(5β0 + 6γ0)/2 + 4d1γ1(β0 + γ0)

+ β2γ0 + 2γ1(β1 + γ1) + γ2(3β0 + 4γ0)
]
π2/3 (14)

+ γ0(β0 + γ0)(β0 + 2γ0)(3β0 + 2γ0)π4/30 = −825.7

where Γb
0 = 3

√
2

8π GF MHm2
b .

Transformation from mb(MH) to mb-pole using

m2
b(mb) = m2

b

(
1−2.67as(mb)−18.57as(mb)2−175.79a3

s(mb)−1892a4
s(mb)

)

[Chetyrkin & Steinhauser (99), Melnikov & van
Ritbergen (00), PMS/ECH estimate by Chetyrkin, Kniehl
& Steihauser(97) motivated by Kataev & Starshenko(95)]
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Approach N1:
Truncated series for ΓHbb, the dependence from MH in mb(MH)
and αs(MH):

αs(µ)NLO =
π

β0Log

[
1− β1ln(Log)

β2
0Log2

]
(15)

αs(µ)NNLO = αs(MH)NLO + ∆αs(MH)MNLO

αs(µ)N3LO = αs(MH)NNLO + ∆αs(MH)N3LO (16)

as(MH)N4LO = as(MH)N3LO + ∆as(MH)N4LO,

∆αs(MH)NNLO =
π

β5
0Log3

(
β2

1 ln2(Log)− β2
1 ln(Log) + β2β0 − β2

1

)

∆αs(µ)N3LO =
π

β7
0Log4

[
β3

1

(
− ln3(Log) +

5
2
ln2(Log) + 2ln(Log)− 1

2

)

−3β0β1β2ln(Log) + β2
0

β3

2

]
, where Log = ln(µ2/Λ(f=5) 2

MS
)
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• mb [Penin & Steinhauser (02) ]
• Λ(4)

MS
from the analysis of CCFR data by [Kataev, Sidorov &

Parente (01-03)]
• Λ(5)

MS
calculated here using matching conditions

order mb GeV Λ(nf=4)

MS
MeV Λ(nf=5)

MS
MeV

LO 4.74 220 168

NLO 4.86 347 251

N2LO 5.02 331 238

N3LO 5.23 333 237

N4LO 5.45 333 241
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Approach N2: Using truncated mb parameterization

ΓHbb = Γ(b)
0

(
1 + ∆Γ̃1as + ∆Γ̃2a

2
s + ∆Γ̃3a

3
s + ∆Γ̃4a

4
s

)
(17)

∆Γ̃1 = 3− 2L, where L = ln(M2
H/m2

b)
∆Γ̃2 = −4.52− 18.138L + 0.084L2

∆Γ̃3 = −316.906− 133.421L− 1.153L2 + 0.05L3

∆Γ̃b
4 = −4366.17− 1094.62L− 55.867L2 − 1.8065L3 + 0.04774L4
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The results for RHbb = ΓHbb/Γ(b)
0 (Γ(b)

0 = 3
√

2
8π GF MHm2

b) at
α2

s-level. Approach 2 is compared with Aproach 1. At the next
page the comparison is made at the α3

s level in the massless case
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Figure 1: The analysed quantities in the OS-approach

Figure 2: The analysed quantities in the RG-approach
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1 ) Results for “running approach” are rather stable, effects of
coefficient functions are not very large [Kataev & VK (08)]

2) In the on-shell scheme large logs are important, making them
comparable with the “running case”, in this case the corrections to
RG function and coefficient functions are seen more clearly, in
particular in the approaches with resummations of the π2 terms
([Krasnikov & A.Pivovarov (82), Radyushkin (82), Shirkov
(00)])
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The resummation of π2-terms in ΓHbb in the case of running or
invariant masses. In these cases the RG-evolution is starting from
αs(s)

2
γ0
β0 . The summation of the π2 leading terms with fractional

power were used by Gorishny, Kataev & Larin (84). It was
considered more carefully in [BKM (01)] and in more detail by
[BMS (07)]. Using notations of this paper let us define

R̃S(MH) =
8π√

2GF MH

Γ(H → bb) (18)

In the MS-scheme

R̃S(MH) = 3m2
b(MH)

[
1 +

4∑

i=1

∆Γias(MH)i

]
(19)
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The BKM expression with 1-loop coupling constant is

R̃BKM
S = 3 m̂2

b (as)
ν0


ABKM

0 (as) +
∑

n≥1

dn ABKM
n (as)


 ,

ABKM
n (as) =

4
β0 π δn

[
1 +

(
β0 π as

4

)2
]−δn/2

(as)
n−1 sin

(
δn arctan

(
b0 π as

4

))
,

δn = n + ν0 − 1 , νO = 2(γ0/β0).

In the Fractional Analytic Perturbation Theory BMS obtained

R̃
(l)BMS
S = 3 m̂2

(l)


a(l)

ν0
+

l∑

n≥1

dn a
(l)
n+ν0

+
l+4∑

m≥1

∆(l)
m a

(l)
m+ν0




The terms a
(l)
n+ν0

are summing β0, γ0 terms (1 ≤ l ≤ 4) and
proportional to them π2, higher orders in γi and βi are accumulated
in the coefficients ∆(l)

m a
(l)
n+ν0

= (as)
2γ0
β0 An(as), the latter are rather

closed to ABKM
n (as). Next figure is from BMS paper.
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Illustration of the calculation of the perturbative series of the
quantity R̃S(M2

H) in different approaches within the MS scheme:
Standard perturbative QCD at the loop level l = 4 (dashed red
line), BKM estimates, by taking into account the
O((as)

ν0 A4(as))-terms, —(dotted green line), and finally MFAPT
from for Nf = 5 (solid blue line), displayed for l = 2 (left panel)
and l = 3 (right panel). These figures are from BMS (07) paper.
See BMS Erratum (08).
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In spite of different definitions of the mass parameters, the results
in presented plots for

RHbb =
R̃S(MH)

3m2
b

, ΓHbb =
√

2GF

8π
MHR̃S(MH) (20)

are in agreement with the results, given in the BMS (07) paper.
Thus, calculated from BMS (07) results interval for
RHbb ≈ 0.48− 0.42 at MH = 120 GeV should be compared with
NNLO RHbb = 0.42 in case of on-shell parameterization, and
RHbb = 0.4 in case of slightly different parameterization of the
QCD effects in the MS-scheme.
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Estimates of theoretical uncertainties of ΓHbb

For MH = 120 GeV and GF = 1.166× 10−5 GeV −2 we get
ΓHbb ≈ 2.50×MeV and difference between OS- and RG-
approaches: ∆ΓHbb ≈ 1× MeV.

Because ΓHbb is dominating for the total width, the branching
ratios for decay modes like H → γγ have the same relative
theoretical error.
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Conclusions

• The results of different analysis of the effects of
O(αs)-corrections are consistent.

• The estimate of theoretical precision of ΓHbb is proposed. It is
possible to check its possible stability to higher order-effects up
to α4

s.
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