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Introduction

In 1965 make proposal, that
any Feynman diagram is a special class of hypergeometric
functions. [Kershaw, 1973; Wu, 1974; Golubeva, 1976]

According to Horn, a formal (Laurent) power series in
r-variables,

m my,--, My
is called hypergeometric if for all 2 = 1,---,r the ration
c(m + e;)
c(1m)
is a rational function of mq,---,m, and ¢; is vector

(unit in the i-th place).

Ore[1930], Sato[1990]

— r m; — — —1
c(m) = I_1 A\, " R(m) (szlr(:uj(m) +v;+ 1))
R is an arbitrary rational function.
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Formulation of problem

The elaboration of the algorithm for reduction and analytical avaluation
of the higher order terms of the e-expansion of any hypergeometric
functions of several variables with arbitrary set of parameters.

There is not universal agreement on what it means to express a solution
in terms of known special functions. One reasonable answer has been
presented by Kitaev, when he quotes R. Askye's Forward to the book
Symmetries and Separation of Variables by W. Miller, Jr., which says
“One term which has not been defined so far is ‘special function’. My
definition is simple, but not time invariant. A function is a special
function if it occurs often enough so that it gets a name”.

Kitaev adds, “... most of the people who apply them . . . understand,
under the notion of special functions, a set of functions which can be
found in one of the well-known reference books. . .." To this, we may
add “functions which can be found in one of the well-known computer
algebra systems.”

“Quantum” problem

One of the classical tasks in mathematics is to find the full set
of parameters and arguments for which hypergeometric functions are
expressible in terms of algebraic functions. Quantum field theory
makes a quantum generalisation of this classical task: to find the full
set of parameters and arguments so that the all-order e-expansion is
expressible in terms of known special functions or identify the full set
of functions which must be invented in order to construct the all-order
g-expansion of generalized hypergeometric functions.
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Gauss hypergeometric function

The Gauss hypergeometric function w(z) = 2Fi(a, b; c; z) could be
defined as

e Solution of second-order differential equation of Fuchsian type with
three regular singular points at z = 0, 1, oc:

diz <zd%+c— 1) w(z) = (zd%Jra) <Z%+b> w(z) ,

e Series

o Fi(a,b;c;z) = i (a)k(b)g 2"

k—0 (C)k; k! ’
where (a)r = I'(a 4+ k) /T'(a) is the Pochhammer symbol.

e Integral:
1. Euler-Pochammer type:

. F(C) ! b—1 c—b—1 —a
“() = TR /O N1 — (1 — )" d

2. Mellin-Barnes:

L(c) 1 [T°T(a+s)I'(b+s)I'(—s) )
I'(a)I'(b) 272 /Z-OO T(c+ s) (—z)°ds

w(z) =
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Reduction of Gauss hypergeometric function (1)

As is known, for any three contiguous Gauss hypergeometric functions
there is a contiguous relation, which is a linear relation with coefficients
being rational functions in the parameters A, B, C' and argument z.

)
)
)=

Any Gauss hypergeometric function with arbitrary parameters is reduced
to the combination of we are able to reduce an original Gauss
hypergeometric function to the linear combination of two (our basis):

A+1,B
C
AB=+1
C
A, B
C+1

Pl(AaB7B7Z) 2F1(

‘|_P2(A7BaB7Z) 2F1 <

—‘,—Pg(A,B,B,Z) 2F1 <

P(a,b,c,z)oF1(a+ I1,b+ I3;¢c + I35 2)

d
— Ql(aaba C7Z)d_+Q2(a'7b7C7 Z) 2F1(a'7b; C; Z) ’
zZ

where a, b, c, are any fixed numbers, P, (Q1, Q2 are polynomial in
parameters a, b, c and argument z, and Iy, I5, I3 any integer numbers.
These basis functions are related by a differential identity:

d b
—2F1<a’b z):a—2F1<a+1’b+1‘z>
C C—‘rl

dz c
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Reduction of Gauss hypergeometric function (lII)

In the case when some of the parameters are positive integers (let us put
B = m), we get one function with the value of one of the parameter
equal to unity and some polynomial with respect to z (parameter
B = 0). In this case, the following two relations should be used for

further reduction:
a(l—z) 2F1 ( ].,CLC—|—]. Z)

= (C—l) —'- (1—|—CL—C) 2F1 (

1,a
c

z) — cl1—(1-2) 2F1( b z)

In this way, if one of the upper parameters is an integer, then the
result of reduction is expressible in terms of one Gauss hypergeometric
function and a polynomials (the function 1Fp). For case ¢ = b, we
should apply the Kummer relation:

) 1 7 ( 1, A z )
Vi pr— E ——— J—
(1—z)A2 P\ 1+b 1—2z

_ 1,14b— A
o (]_—Z)lAQFl < 1+—|—b Z)

1,a

(a—c)z o1 ( et 1

Ab
2F1<
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Differential Equation approach for construction of e-expansion

Let us consider as basis the Gauss hypergeometric function with the
following set of parameters:

w(z) = oF] (E—l—als,@—kags;l —@—Fce;z) ;L
q1 q> qs3

It is the solution of the differential equation

d d
[z— -+ P -+ ale} [z— -+ P2 -+ aze] w(z)
dz 2

dz q q
d d

= — [z——@—kce] w(z) .
dz | dz q3

with boundary conditions w(0) = 1 and z%w(zﬂz:o = 0. Due to
analyticity of Gauss hypergeometric function with respect to parameters,
this equation is valid in each order of €, so that in terms of coefficients
functions wy(z) defined as

w(z) = Z w(2)e”.

In terms of coefficients functions wy(z), we have

d 1 d
dz a1 g2 Zq3 dz q192
C d
= (a1+a2——> (z—> Wk—1
z dz

P2 P1
+ <a1—+a2—> Wi—1tajaswi_2 .
qz2 g1
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Differential Equation approach for construction of e-expansion (lI)

M.K., JHEP, 2006

The main idea is to find a new parametrization (change of variable)
z — £(z), and to define a new functions pg (&), related with a first
derivative of original functions wg (&),

d

pr(§) = Zrkj(ﬁ)d—gwj(ﬁ) ,

so that original equation can be rewritten as system of linear differential
equations of the first order with an rational coefficients:

d

A
d—g’wk(ﬁ) = pr(§) Zj:

§—aj’
B;
§ — B
C;
§—

d
d—gpk(f) = Pk—l(f)zj:

D.
+wi—2(6) ) : _‘70. :
j J

+wi-1(§) Z

where A;, B;, C;, D;, aj, 35,74, 0; Then the iterative solution of this
system can be constructed. Under condition, wo(z) = 1(pg = 0),
this solution are expressible in terms of hyperlogarithms depending on
parameters o, 3;,;, 04, (possible) times on powers of logarithms.

The main problem is to find general algorithm for getting of this
parametrisation and enumerate all possible values of parameters. We
are not able to proof that we got solution of this problem for all
possible values of parameters. But for some special set of parameters
the solution is done.
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lterative solution of differential equation: integer values of parameters

2F1(CL1€, asée; 1 -+ C&; Z)

Starting equation is

(1-2)1 (27 ) wil»

dz
c d

— (al—l—ag——) (z—) wi_1(z)F+araswi_o(2) .
z dz

Let us introduce a new function: and rewrite original equation as

(1— Z)dizpi(z) (a1—|—a2—§> i1 (2)+araswi_s(2)

d
zawz(z) = pi(z) .

The solution of this system can be presented in an iterated form:

pi(z) = (CL1-|—CL2—C)/ —Pz 1(2)

1 —t
+a1a2/ —wz o(t) —cwi—1(2) , ©1>1,
o 1 —t
dt
wz) = [ Sem, iz1.

and written in terms of generalized polylogarithms:

Likl,...,kn(z)

“dt dt dt dt dt dt
= — 0 -+ 0 o) O+ 0 —0-+--0—0O0
o G t, 1 —1 1 t, 1—1
k1—1 times kn—1 times
>
— kL k P
mi1>mo>--mn>0 m11m22 T My
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lterative solution of differential equation: half-integer values of parameters
M.K.,Ward,Yost, JHEP, 07.
)
Original equation is

JF, ( ai€, ase

5+ fe
_ @h+ag_i &i-umﬁ@}Hh@wFAZL
[ z] < dz>

Let us introduce the new variable y

L — /75 (1 — y)?
Yy = ’ z = 4—7
1+ /% Y

and define a set of a new functions p;(y)

d 1 —y
yd—pz’(y) = (ai1+a2) pi-1(y)

Y 1+y

+2f< : : ) (y)+ (v)
l—y l—l—y Pi—1\Y ajaw;—2\Y) ,

d
yd_wk(y) — —Pk(y)-

Y

The solution of these differential equations has the form

4 1 1
pi(y) = /1dt {Zfl—_t—Z(alJraa—f)l—H} pi-1(t)

—(a1+az) [wi—1(y) —w;—1(1)]
Y dt ,
—l—a1a2/ TUJZ'_Q(t) 3 (] 2 1 3
1
Y dt

wily) = —/1 Zpi), i1,
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lterative solution of differential equation: half-integer values of parameters

There is a new type of function, coming from the integral

[ r)dt/(1+1).

k _ _
wi(y) = D56,k " () i) W) — Lig) ()] .
=0 i S S i
k—1 | _ i
pr(y) = D& k)" () |Liggy (v) — Liggy (D]
=0 i S S i
are numerical coefficients, are multi-
index,

is a coloured multiple polylogarithm of one variable defined as

mi mn
. _ mi 91 T
Lifoq,00,0\ (2) = z :
( 1,925, k) s1 59 Sn,
§1,82,,8n ml m2 ° e 'mn

m1>mo>---mn>0

It has an iterated integral representation w.r.t. three differential forms,

d
wo = _y7 0-_07
Yy
d
Wy = y’ o= =1,
y—o

1
. _ 81—1 82—1 Sk—l
81’82,---’Sk 0
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Hyperlogarithms (Multiple polylogarithms)
The starting point of our consideration is integral

I(ak, ar_1 -+, as; 2)

/ dt;. /tk dtp_1 /tz dt,
tk_ak: 0 thk—1— Qr—1 o t1—a
By QTR

t—-ak

where we put that all ar 7 0. In early consideration by Kummer,
Poincare, Lappo-Danilevky this integral was called as hyperlogarithms
It was treated as analytical functions of one variable z, the upper limit
of integration. Goncharov has analysed it as multivalued analytical

functions on a1, - - -, ax, z. By definition, the multiple polylogarithm
. o0 T mi T m xmn
|_| (CU T e e . ) — 1 2 .« e e n
kl,kQ,---,kn 1, 2 ) n E kl k2 kn )

mp>-->mq>0 11" My

where weight £ = k1 + ko + - - - + k,, and depth is equal to n.
The multiple polylogarithm is a special case of iterated integral

Gmn,mn_l,--',ml (xna "ty L1 Z)
:I(,Oa"'.ao,wxna Ohaag 7':CTL—17"'7,07"'.70,7331;2)
mn—1 times m,,_1—1 times mq—1 times

. L2 I3 z

: (_1)nLIm17m27--.7mn (_, _, A * , _>
L1 X2 Ln
The inverse relation is
I—ikl,kg,---,kﬁn (y17 Yo, - - ,yn)
1 1 1
= (—1)"Grp.x ko k ( ree 1)
’ — 1 2R ) ) )
i Yn YnYn-1 yl"'yn’

Mikhail Kalmykov 12



Algebraic relations

Let us consider a Gauss hypergeometric functions with integer or half-
integer values of e-independent parameters. We will call these basis
functions as functions of type A, B, C, D, E, F. For each type the
values of a, b, ¢, parameters of our basis, are presented in Table I:

JF, ( a,b z)
c
Table 1
A B C D E F
aie as as % + bie ai1€ % + bie
ao€ % + be % + be % + boe A€ % + boe
%—|—f€ 1+ ce %—I—fe %—|—f€ 14+ce | 1+4+ce

The number of independent basis hypergeometric functions, enumerated
in Table I, can be reduced by help of the Kummer transformations of

variable z.
1 1 —z 1
Z_>_71_Z7 ) 71__
z 1—2"1—z2 z

With respect to this transformations the functions of type A, B, C, D
are transformed into each other. This allows us to reduce the number
of independent hypergeometric functions. The functions of type E, F
transform into functions of the same type.
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Algebraic relations (II)

M.K., JHEP 06.
Let us illustrate how functions of type B, C, D can be expressed in
terms of functions of type A:
D-type:
)

1 1
Libie, Lqbye
F 2 72
2 1( 14 fe

(1 — Z)(f—bl—b2)s (F—b)e. (f—by)e
= 2 1 1 z ),
(1 — 2)1/2 §—|—fg
C-type:
1
=+b, ae
2 )
2F1 < %—Ffé" Z)
1 ( aeg, (f—b)e Z )
— o F1 1 —
(1 —z)ee st+re 1 — =z
B-type:
1
=+be, ae
2 ; _
2£1 ( 1+4+ce Z) o
I'(1+ce)l (=2 —(c —a — b)e) (1 — z)/2Hlemazb)e
I'(ae)T (5 + be) z1—(a—c)e
1+ (c—a)e,1—ae 1
2F1 ( %—F(c—a—b)s 1 z)

1 I(14ce)l (53+(c—a—b)e)
2T (1 + (¢ — a)e)l (3+(c—b)e)

— 1
F, ( ae, (a — c)e - _)
2

s+ (a+b—c)e
As a result, we get the following statement:
Any functions of type A, B, C, D can be expressed in an algebraic way
in terms of just one of these types.
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Application to Feynman diagrams

There are several important master-integrals expressible in terms of
o F hypergeometric functions: This set of integrals includes one-loop
propagator type diagram with arbitrary values of mass and momentum;
two-loop bubble integral with an arbitrary values of masses, and one-
loop massless vertex diagram with three non-zero external momenta.
For these diagrams, all order e-expansions can be written in terms of
Nielsen polylogarithms only.

J12 V12

Figure 1: Bold and thin lines correspond to massive and
massless propagators, respectively.

Diagrams of this type suffer, in general, from irreducible numerator, so
that the solution of recurrence relations is nontrivial problem (besides
one-loop propagator and two-loop bubble cases). Using the algorithm
of Davydychev-Tarasov any tensor integral can be presented in terms
of scalar integrals with the shifted space-time dimension and arbitrary
(positive) powers of propagators.
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g-loop sunset-type propagator

J12(a17 a2, -+, &g, 67 m27p2) —
d"k1d ks - - - Ak,

/ (k3 + m?]P[(k1—ko—- - —kg—p)?]*1[k3]*2 - - - [k2]*a
_ [HE]lF g%(;lf)ll)] an/Q(mZ)qn/Q—B—a
I (a+B—2q) T (a—3(g = 1))
L(B)T (3) T (3-%)

<o F, < o — (g — 1@),a+ﬁ—%q ‘ _p_2> , (1)

5 m?2

where

q
a = E Ay
r=1

For given type of diagram there are only two nontrivial master-integrals.
In the parametrization n = 2m — 2¢& with integer m, the basis is

P ( 1+8(q—1),1+8q‘ p2>
2 1 2_ — Y
g

F ( 8(q—1),€q ‘ p2)
o1 1— -/
€ m

Mikhail Kalmykov 16



g—loop bubble with g — 1 massless lines

‘/12(0417 a2, -y Qp, ﬂla ﬂ27 m27 M2) —
/ d"kyd ks - - - d"k,
[k24+m2]) 1 [(k2_ + M2])%2[k2]°1 - - [(kp—ky—ha—- - - —kp_1)?]™
I PV € Bk B e D L
' T(a) | TBYT(B)T (3) T (3—3)

X {F (g-&) r ((H-ﬁz-%(q — 1)) I (a+ﬂ1+ﬁ2—SQ>

wop [ BritBeta—38q atfa—g(qg—1) | M
2 1+062—3 m2

41 (-2) 1 (atpi-2a- 1) T (a-S(a-2)

n/2—02
M® m [ @ Ba—2)etBi-3a—1) | M
m2 1—0B2+3 m2

qg—1
o = E oy .
r=1

where
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q—loop bubble with ¢ — 1 massless lines (II)

The results of the reduction are expressible in terms of four Gauss
hypergeometric functions. In the parametrization n = 2m — 2¢,
where is m is an integer number we get four basis functions:

g [ 1t+e(a—1), 14eq | M®
2471 2+€ m2 3

o [ la=1),eq | M

. 1+ ¢ m?2 ’
<1+8(q—2),1+8(q—1) M2>

2F1 ’

2 —¢ m?2

" < e(q-2),e(g=1) %)

1 —e¢ m?2

Only for ¢ = 2 (two-loop case) these four hypergeometric functions
are expressible in terms of one Gauss hypergeometric function and the
function 1 F}y, so that only one nontrivial master-integral exists. For g >
2 (3-loop or more) there are four independent Gauss hypergeometric
functions. As a consequence, there are four nontrivial master-integrals
for diagrams of this type at 3-loop or more.
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Generalized hypergeometric functions

The generalized hypergeometric function can be written as series

F ({A1+a1€},{A2+a25},---{Ap+ap€} Z)
PR\ {By 4 bie}, {Ba+ bae}, - - {Bo + bse}

. Z_J ., (As 4 ase);
j=0 7! H?:1(Br + bre);

where (a); = I'(a + j) /T' () is the Pochhammer symbol.

We want to construct the e-expansion of this series.

P<Q converges finite z
pFgo = P=@Q+1 converges z] <1
P> Q-+ 1 diverges z #£0

Reduction of hypergeometric function

It is well known that any function
pFp—1(ad + m; g—i— l;; Z)
is expressible in terms of p other functions of the same type:
Rp1(@, b, 2),Fy_1(@ + b+ k; 2) =

p
Z Ri(a,b, z),Fp_1(d+ €i; b+ Ei; 2)
k=1

-

€k, and Ek are lists of integers and Ry are polynomials in

where m, k, €%,
sa,b, and z.

Y
parameters a,
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Construction of all-order e-expansion via Differential equation

w(z) = yF,_1(de; 1 + be; 2)

Defining the coefficients functions wy(z) at each order by

w(z) = Z wk(z)ek,

The differential equation is

98] ()"

=§§Pﬁm—§m@ﬂ(ﬁ%ywu%xa+fwmwkga,

where P;(a) and Qj(l_;) are polynomials of order j depending on
vectors a and b respectively.

‘”(z) = p/"(2), j=01,-,p—1
b
(Pﬂaﬁn@:ZzﬂmW“mw%ﬁ@
=1
The solution is iterated integral:
p
HP—1) _ (AT at i)
e = S [r@-ad)] [ 75w

p—2 .
— 57 Qib)p V(=)
=1

—Qp- 1(5)["1]16 p+1(2) =00, k—p+1]
pl(gj_l)(z) — / (j)(t) kZ 1 3 .]:1727729_1 ’
0
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Series represenation

The pioneering systematic activity in studying the Laurent series
expansion of hypergeometric functions at particular values of the
argument (z = 1) was started by David Broadhurst. in the context of
Euler-Zagier sums (or multidimensional zeta values). This activity has
received further consideration for another, physically interesting point,
z = 1/4 and also for the “primitive sixth roots of unity”. Over time,
other types of sums have been analysed in a several publications:

harmonic sums
generalized harmonic sums

binomzial sums

mmverse binomaal sums

How to calculate this sums analytically?
Generating function approach

Let us rewrite an arbitrary serie as
(XJ .
Sx(2) =) #nzh) ,
j=1
where A denote the collective sets of indices, whereas n7(J) is the

coefficient of Z7.

The idea is to find a recurrence relation with respect to 7, for the
coefficients 1yeca(j), and then transform it into a differential equation
for the generating function X z(z). In this way, the problem of summing
the series would be reduced to solving a differential equation.
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Generating functions approach

o0 1 , ,
iy _.Sal(] 1)- Sak(] —1)
— JY J
3—1(j>
I -y
= — ¢, zIn” yLli, z
1+ y “— D, Yy (g)(y)

§2<?>u%%0—1y~5%u—1)

-5

s

Cp,5 .
[1ix+%4“fXW

VIEST]

) (x)

> 1

QY

= Zép’glnp xLi (x) , c
~— (%)

p)

= (2 W .
D () =S =D Sa (G- 1)
1 N1/

_ (1—y)?

o (1=y)?

X
u=
(1‘|‘X)2

X
U=
(1‘|‘X)2

where c is a positive integer, ¢, 5 Cp s and d, s are rational coefficients,
Li<3) (z) is the multiple polylogarithm of a square root of unity and
g

j_l 1
Sa(j T 1) — Z’I,_a )
1=1
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Special values of agrument

It is evident that some (or all, if the basis is complete) of the alternating
or non-alternating multiple Euler-Zagier sums (or multiple zeta values)
can be written in terms of multiple (inverse) binomial sums of special
values of arguments. Two arguments where such a representation is
possible are trivially obtained by setting the arguments of the harmonic
polylogarithms vy, x to %1:

u = 4, —1,
1

y:
u = ; =1.
1 X

Another such point is “golden ratio”,

_3-+5

U:—l, Yy = 2

has been discussed intensively in the context of Apéry-like expressions
for Riemann zeta functions. For two other points

1 (5)
U — , = eX 1— 5
Yy p 3

u = 2, y=z1,

the relation between multiple inverse binomial sums and multiple zeta
values was analysed mainly by the method of experimental mathematics.

Let us make a few comments about harmonic polylogarithms of a
complex argument. For the case 0 < u < 4, the variable y belongs
to a complex unit circle, y = exp(i0). In this case, the coloured
polylogarithms of a square root of unity can be split into real and
imaginary parts and generalized log-sine functions are generated.
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One half-integer parameter

M.K., B.Ward,S.Yost, JHEPO7.
The all order e-expansion of the generalized hypergeometric functions

where fY, B are lists of integers and Iy, I are integers, are
expressible in terms of the harmonic polylogarithms with coefficients
that are ratios of polynomials.

At the present moment it is unclear is there some limitation on the
type of functions generated by Feynman diagrams or a zoo of a new
functions is artifact of using technique?
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