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o Motivation

e The diagrams « Perturbative integrals
@ Which kind of Feynman diagrams (F.D.) we consider

e Operator formalism
@ Algebraic reformulation of integrals for F.D.: manipulations with
integrals — manipulations with operators

e Application
@ Ladder diagrams for ¢3-theory in D = 4; relations to conformal
quantum mechanics
@ Magic identities for ladder integrals.
@ Lipatov chain model.
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1. Motivation

Physies

@ In perturbative QFT physical data are extracted from multiple
integrals (perturbative integrals) associated to F.D.

@ The number of diagrams grows enormously in a higher order of
the perturbation theory —-
numerical calculations are not sufficient to obtain
desirable precision.
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(A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky;
J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)

@ Analytical results for F.D. are expressed in terms of
multiple zeta values and polylogs = very interesting subject in
modern mathematics
(D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).

@ Analytical results for F.D. give explicit expressions for
Green’s functions of some specific integrable quantum mechanical
models and vice versa (this is one of the advantages of the
proposed algebraical method).
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2. The diagrams

The E.D. (considered here) are graphs with vertices connected by lines
labeled by numbers (indeces). J

To each vertex of the graph we associate the point in D-dimensional
Euclidean space R, while the lines (edges) of the graph (with index «)
are propagators of massless particles

x %y = 1x-ype

where | (x — y)2 = (X2, (xi — v) (X, — ¥i))*|, a €C, x,y € RD. We
have 2 types of vertices: the boldface vertices e denote the integration
over RP. These F.D. are called F.D. in the configuration space.
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2. The diagrams
Examples (F.D. in configuration space):

a. 3-point function (graph with 5 vertices and 5 edges):

o2 o4 _ f dPzdPu
o o (Ziy)2a1 22a2 y2a3 u2a4 (Uiy)2a5

— f dPx
XN (x—x1 )2a1 (X_X2)2a2 (X_X3)2a3

C. Propagator-type diagram:
ag w ag

o7 _ dPzdPudPy dPw
0 y 2)20‘1 Z2ap (Z—U)2a3 U20‘4 (u—y)2a5 y2°‘5...(W—X)2a9

Analyt|cal calc. of F.D. — reconstruction of graphs to-reduce no. of e.
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3. Operator formalism
Consider D-dimensional Euclidean space RP with coordinates x;,
(i=1,2,...,D). We use notation: | x2* = (X2, x?)*|. Let §; = g and

pi = ,b,T be operators of coordinate and momentum

[Gk, Byl =i -

Introduce states |x) = [{x;}), |k) = |[{ki}): Gi|x) = x; |x), bilk) = ki |k),
and normalize these states as:

1 .
(x|k) = 2P exp(ik; x) , /de|k = :/de|x

"Matrix representation” of p~2% (propagator of massless particle) is

| ()
Y7 (a(ﬁ ) = o722 r(&)) ‘

where | 3’ = D/2 — g|and () is the Euler gamma-function.
For g2~ the “matrix representation” is:  (x|G%*|y) = x2* 6P(x — y).
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3. Operator formalism

Algebraic relations (a,b,c) which are helpful for analytical calculations J

of perturbative integrals for multi-loop F.D. = reconstruction of graphs

a. Group relation. Consider a convolution product of two propagators:

o0z GW.g) et B)
| ey = (x — y)E@ii-D72) (G‘“’ )= 2w a(ﬁ)) ’

which leads to the reconstruction of graph:

Xt Py Gy xRy

This is the "matrix representation” of the operator relation

l")—2a’ ﬁ—zﬂ' — b—2(a’+ﬁ’). ' ' '

J dPz (x|p72" |z) (2] 27|y} = (x|p~2 "+ )]y
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Algebraic relations (a,b,c) which are helpful for analytical calculations J

of perturbative integrals for multi-loop F.D. = reconstruction of graphs

a. Group relation. Consider a convolution product of two propagators:

d°z _ G, p) _ ala+p)
[ et~ o (G0 = 25555
which leads to the reconstruction of graph:
\

X@u by = G.g) xRy

| :
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3. Operator formalism
b. Star-triangle relation The "Method Of Uniqueness” (D.Kazakov, 1983)
(Yang-Baxter equation)

/ dPz B G(a, /8)
(x — 2)20" z2(a+B) (z — y)28" (x)28 (x — y)z(gfafﬁ) ()2 '

Reconstruction of graph:
0

a+pf

(Nlle}

= G(a,8) °
[eY b4 3’

X y (a+B) Y

Operator version:
,’5—2016’—2(04—1—5)‘“)—2,6 — a_zg'b_g(a+ﬁ)e’_2a ! ! !

Compare with Yang-Baxter equation:
S(a) S(a +B) S(8) = S(8) S(a + B) S(a)
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3. Operator formalism

Remarks on star-triangle relation:
1. STR is a commutativity condition for the set of operators
Ha — 'bZaé‘IZQ

bZ'y(’:"Z'y b2aa2cx — l")2aé"2cx [I\)276’27 =
PPO— g P = P pP7gP0—) = STR fory = a + 3 .
2. Algebraic proof of the STR. Introduce inversion operator R:

R?=1, (x|R=(%|
RGR=q;/ 4%, RP:R pi—-24q
Rp? R = @72(6+§)’5263,(

i (Qp
-2)

= RpPtB) R = pRagllath) p2b — 26 p(ath)gRa

R"Za’i‘)ZﬁR
“1



3. Operator formalism

3. One can deduce "local” STR which is related to the
a-representation for FD (R.Kashaev, 1996)

W(x?|a) = exp (—f)

a

W(GP|ar) W(RP| 1) W(&Plas) = W(RP| 5;) W(&?182) W(R| 5;)

where o; = 210+01%t%20% i g star-triangle transformation for
. . ! .
resistances in electric networks

() 11/25



3. Operator formalism

c. Integration by parts rule. (F Tkachov, K. Chetyrkin, 1981)

(reconstruction of graphs)

0 0 0
ap 1 { ( ap—1 1 ap )
= (D=Par—ai—aa) 1™ - +
aq ag (D 2012 il 043) aq+1 ag ag
aq+1
X y X y
0 0
ag—1 ag 1
+asg ( - )}
aq agz+1 o
az+
X y X y

It can be represented in the operator form:

2 p (a—|—1)] N2 n2(8+1) ]
5 PR pR0 — [0% PP TN] 5 25 2oan q ,P I

where o = —af, v = —az and g = —aj.
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3. Operator formalism

The integration by parts identity

— [6’2, ,")2(04—{-1)] 22y 2 oo A2 [67

Oy —(r— 220 N2y 223 L)
(2y B)pq-p 4(a+1)qp —p* > TEES)

can be proved by using relations for Heisenberg algebra

(7, PPV =4 (a+ 1) (H+a) P>,

HEPe = G2 (H+20) , HPP™ = PP (H— 2a) |

where | H := 5(pi@; + @ip;) | is the dilatation operator.

The set of operators {§?, p?, H} generates the algebra s/(2).
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3. Operator formalism

An example of the operator representation for F.D.

Consider an operator:
W(Oé,‘) _ 'E‘)—Zozq a—Zag i‘)—Zaé a—2a4 '6—204.’5 . a—Zocgk 1’5—20/2,(4r1 )

This operator is the algebraic version of 3-point function:

X2k

(X|W(ai)ly) ~

X @z, s Z, 0 O2k—1 Z, o2kt y

Indeed,

(x|W(aj)|y) = (x| p~2 ﬂ@‘zaz P2 ﬁ&*a‘* p2es .. T-Térzw P2z |y)
Jdz1z)(z| [dZ|z)(z] [d’z]z)(z,

Remark. (x|W(«;)|x) represents the propagator-type diagrams.
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3. Operator formalism

The advantage: we change the manipulations with integrals by the
manipulations with elements of the algebra generated by p?*,§%5. J

Is it possible to define the trace for this algebra?

28] L 2ap N—20f . —2ap, A —20% dDX
Tr(w(ai)):/dDX<X]p 1 g 2 2p s‘..q 2 2kp 2k-+1 IX) = C(Oéi)/xzﬁ.
(B =>_; s c(wy)- coeff. function). The dim. reg. procedure requires:

d’x
W = 0 VOé 7'é 0 .

The extension of the definition of this integral is (S.Gorishnii, A.Isaev, 1985)

D
s = n2,0(al) .| !

where Q, = 27"%/[(D/2), a = |a|e ™. Then, the cyclic property of
"Tr” can be checked. "Tr”: propagators = vacuum diagrams.
()
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4. Application

L-loop ladder diagrams for ¢° FT < D-dimensional conformal QM J

Consider dimensionally and analytically regularized massless integrals

d 1
Dy (po, P,..,, P &, B, 7) [H/ 20 ( & ] 11 (Prr = P)?0m

(P — P | 1 Prnis
which correspond (t)o the diagrams (xy = po, Xo = P41, X3 = p):

pop  Pi-p PP PP
Pig  Poq [reeeeees Pri1 [P
Po Py P Priq
(P = Pm — Prk)

The diagrams (in config. and moment. spaces) are dual to each other
(the boldface vertices correspond to the loops). The operator version is

Dy(xai &, B,7) ~ (x4 1p~26 (TThey §27%(@ — x6) 2924 ) xg)
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4. Application

For simplicity we put| «; = «, 5; = 3,v; = v |and consider the

generating function for D, :
o0 - —1
) _ L . N 52y _ 9
Dyl :7) = 30" Dulr ) ~ (x (PP o5 ges) 1)

where g = g/a(v’) is the renormalized coupling constant. For the case
a + 3 = 24|, using inversions, etc. we obtain

g —1
ADA ! x
Dg ~ <U’ <p2'y - 6]2’6) | V> ’

where gy = g(x3) %, u; = ((f:))z - (())((33))2 Vi = (())((22))2 - (())((33))2

The ¢3-theory for D = 4 is related to o/ = 1 = 3 and we obtain the
Green’s function for conformal QM:

—1
Dy~ (ul (P-%) |v),
ForD;é4thisGF$Iadderdiagramsfora:ﬁ:1,7:§—1.
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4. Application

Our method is based on the identity:

1 S N\ (H=1) 15,
/?32—9/6/2_;)( 4) [q H-1ta) 29 LL

where we denote |[. ..

=4 (0L [...]),_,- Taking into account
(H-1) (- 1 L+1 e .
(H=1+a)i / dtt- e 3( a ))

and et(H+2) IX) =

le~tx) the Green’s function Dy is written in the form

1 1 /ge\t
gy = m (3) o).

oo ot [~ at[(5)" o] ()
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4. Application

For D = 4 — 2¢ one can expand ¢, (u, v) over small e:

M1 —¢) =€ «
¢ (u,v) = éhr?—fuzﬁ—e)kz%k!q)i (21,22) .

where z; + zo = 2(uv)/u? and z;z, = v?/u?. The coeff. functions <I>(Lk)
are expressed in terms of multiple polylogarithms. The first one is
(N.I. Ussyukina and A.l. Davydychev; D.J. Broadhurst; 1993)

L

fleL—f
o0a2) = 5 e @b @) Ui (2]

where polylogs are

= wn
Lip(w Z—m
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4. Application

The next coefficient is: ¢(L1)(z1,zz) =

2L— . . .
2L nlin~ (z120) [(nL1n+1 (z1) = Li,,(21,1) - Lln,1(Z1,%)) —(z1 < 22)]

] (=)"@2L-n)!(n—=L)! (zy — 22) ’
where multiple polylogarithms are
. Wno Wn1 .. Wnr
Limg.mq,...m/(Wo, W1, ..., W) = Z 0™ T

mo M me
no>ny>-->n>0 No"Ny™-..Nr

The function ¢(L1)(z1 , Z2) gives the first term in the expansion over ¢ of
the L-loop ladder diagram (with special indices on the lines)
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5. Application: magic identities for ladder FD
Conformal properties for GF of CM give (V3,7)

BN\~1 8
1 2 (L2v?)2 — 1 5
203 o, (U] ( 7= Q@z(m)w) v) = WWW <P27 - g(L;Z(,B+w) ) V),

where u;, v;, U}, v/ are such that % = éz,;z (“;2")2 - (“(’—,)"2')2. We take

- 1_1 y_1_1 py_1_1 1 __ 1 (x)i _
U=% Xs’V_Xz Xs’u_X1 X12’V_X13 X12 (X)f_ xe 0 Xip = X=X
expand over g to obtain identities for L-box FD in order gt:

Xt = X3 y+B8 y+B... X2 —X3 X1 —X3 + Xp — X3
-2 2
N% _Lp =8 Y+B8
u _ vZ2 . — .
I CEETANE CERTANES ;
3 Xi2
X1 ~' X2
. X2 x X2x2
where u = )1(3)(23 V=2 23 ;v+ B and v’ = 5 — ~ are special indices
1

2
on the lines and X1, Xo, x3 parameterlze external momenta.

Case D = 4,6=0, v = 1< (J.M. Drummond, J. Henn, V.A. Smirnoy, E. Sokatchev)
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6. Application to Lipatov’s model
Lipatov's model is described by the Hamiltonian H = Y"7_, H;, 1, where

Hi = | pi In(p/k)p + Pk In(Plk)pk + In(pipx) — 2¢(1) | = (1)
= ‘ 2 In(pix) + pix IN(Bidx) Py — 21(1) ‘ (2)
(1) - constant, pix = g; — gk, q; - coordinates, p; = 8‘2, - momenta.

Expression (2) appears in the expansion over ¢ of the R- operator
Ri(€) == i “(Bibk) pj T = 1+e (2 In(pix) + pix IN(BiPx) Py >+€2 e

One-dimensional analog of the operator "star-triangle” identity:

plkp;l—w Pik _pﬁpOH_B I A pkl p;H_B Pri = bl p(/jl—i_ﬁpl

Then, we have: Rix(e) =
] i ! N 1 ¢ 2
= pi (i) pi = i B i PicBic i’ T = By P By By i P

= 1+e (B In(pw) By + B In(pi) i+ (Bipe) ) + €. .
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6. Application to Lipatov’s model

The operator Ri(e€) := pj"“(Dibk) py ' € satisfies the Yang-Baxter
equation

Riiy1(€) Riytiro(e 4+ €) Riit1(€)) = Rig1iva(€) Riip1(e + €) Ripriza(e) -

The complete holomorphic Hamiltonian H = Y"1, H;, 1 appears in the
expansion over e of the monodromy matrix (S.E. Derkachov and A.N.Manashov)

Ti12...n+1)(€) = R12(€) Raz(€) Rza(€) - - Rany1(e) -
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@ Applications of the coefficients @, (u, v) for the avaluations of
4-point functions in N = 4 SYM theory.

@ Lipatov’s integrable model — describes high energy scattering of
hadrons in QCD.

@ Generalizations to massive case and to supersymmetric case. In
massive case it is tempting to calculate the Green’s function

1 e¢]

- . v) = Lo, (u,v; m?),
& g/ +m) " ;g t )

{ul

@ It seems that the approach is not universal even for massless
FDs. We should add something new.
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