Operator approach to analytical evaluations of Feynman diagrams

A. P. Isaev¹

¹Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

1 / 25

()

Plan

- Motivation
- 2 The diagrams
 → Perturbative integrals
 - Which kind of Feynman diagrams (F.D.) we consider
- Operator formalism
 - Algebraic reformulation of integrals for F.D.: manipulations with integrals → manipulations with operators
- Application
 - Ladder diagrams for ϕ^3 -theory in D=4; relations to conformal quantum mechanics
 - Magic identities for ladder integrals.
 - Lipatov chain model.

Physics

- In perturbative QFT physical data are extracted from multiple integrals (perturbative integrals) associated to F.D.
- The number of diagrams grows enormously in a higher order of the perturbation theory =>> numerical calculations are not sufficient to obtain desirable precision.

Physics

- In perturbative QFT physical data are extracted from multiple integrals (perturbative integrals) associated to F.D.
- The number of diagrams grows enormously in a higher order of the perturbation theory => numerical calculations are not sufficient to obtain desirable precision.

Physics

- In perturbative QFT physical data are extracted from multiple integrals (perturbative integrals) associated to F.D.
- The number of diagrams grows enormously in a higher order of the perturbation theory => numerical calculations are not sufficient to obtain desirable precision.

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
 (A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky;
 J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- Analytical results for F.D. are expressed in terms of multiple zeta values and polylogs polylogs to very interesting subject in modern mathematics
 - (D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).
- Analytical results for F.D. give explicit expressions for <u>Green's functions</u> of some specific integrable quantum mechanical models and vice versa (this is one of the advantages of the proposed algebraical method).

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
 (A.B. Zamolodchikov (1980): I. N. Lingtov: I. D. Faddeev and G.P. Korchemsky:
 - (A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky; J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- Analytical results for F.D. are expressed in terms of <u>multiple zeta values and polylogs</u> => very interesting subject in modern mathematics
 - (D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).
- Analytical results for F.D. give explicit expressions for <u>Green's functions</u> of some specific integrable quantum mechanical models and vice versa (this is one of the advantages of the proposed algebraical method).

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
 (A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky; J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- - (D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).
- Analytical results for F.D. give explicit expressions for <u>Green's functions</u> of some specific integrable quantum mechanical models and vice versa (this is one of the advantages of the proposed algebraical method).

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
 (A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky; J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- - (D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).
- Analytical results for F.D. give explicit expressions for <u>Green's functions</u> of some specific integrable quantum mechanical models and vice versa (this is one of the advantages of the proposed algebraical method).

2. The diagrams

The F.D. (considered here) are graphs with vertices connected by lines labeled by numbers (indeces).

To each vertex of the graph we associate the point in D-dimensional Euclidean space \mathbf{R}^D , while the lines (edges) of the graph (with index α) are propagators of massless particles

$$x - \frac{\alpha}{1/(x-y)^{2\alpha}}$$

where $(x-y)^{2\alpha} := (\sum_{i=1}^{D} (x_i - y_i) (x_i - y_i))^{\alpha}$, $\alpha \in \mathbf{C}$, $x, y \in \mathbf{R}^D$. We have 2 types of vertices: the boldface vertices \bullet denote the integration over \mathbf{R}^D . These F.D. are called F.D. in the configuration space.

(

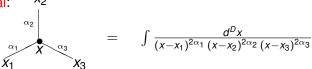
2. The diagrams

Examples (F.D. in configuration space):

a. 3-point function (graph with 5 vertices and 5 edges):

$$\frac{0}{\sum_{\alpha_{1} = \alpha_{2} = \alpha_{3}}^{\alpha_{2} = \alpha_{4}} \frac{d^{D}z d^{D}u}{u}}{x} = \int \frac{d^{D}z d^{D}u}{(z-y)^{2\alpha_{1}} z^{2\alpha_{2}} y^{2\alpha_{3}} u^{2\alpha_{4}} (u-y)^{2\alpha_{5}}}$$

b. Star integral:



c. Propagator-type diagram:

$$0 \xrightarrow{\alpha_{4}} y = \int \frac{d^{D}z d^{D}u d^{D}y d^{D}w}{(y-z)^{2\alpha_{1}} z^{2\alpha_{2}} (z-u)^{2\alpha_{3}} u^{2\alpha_{4}} (u-y)^{2\alpha_{5}} y^{2\alpha_{6}} ... (w-x)^{2\alpha_{9}}}$$

Analytical calc. of F.D. → reconstruction of graphs to reduce no. of •. ¬ ¬ ¬

Consider *D*-dimensional Euclidean space \mathbf{R}^D with coordinates x_i , $(i=1,2,\ldots,D)$. We use notation: $x^{2\alpha}=(\sum_{i=1}^D x_i^2)^{\alpha}$. Let $\hat{q}_i=\hat{q}_i^{\dagger}$ and $\hat{p}_i=\hat{p}_i^{\dagger}$ be operators of coordinate and momentum

$$[\hat{q}_k,\,\hat{p}_j]=\mathrm{i}\,\delta_{kj}$$
.

Introduce states $|x\rangle \equiv |\{x_i\}\rangle$, $|k\rangle \equiv |\{k_i\}\rangle$: $\hat{q}_i|x\rangle = x_i |x\rangle$, $\hat{p}_i|k\rangle = k_i |k\rangle$, and normalize these states as:

$$\langle x|k\rangle = \frac{1}{(2\pi)^{D/2}} \exp(\mathrm{i}\,k_j\,x_j) \;, \quad \int d^D k\,|k\rangle\,\langle k| = \hat{1} = \int d^D x\,|x\rangle\,\langle x| \;.$$

"Matrix representation" of $\hat{p}^{-2\beta}$ (propagator of massless particle) is:

$$\underline{\langle x|\frac{1}{\hat{p}^{2\beta}}|y\rangle = a(\beta)\,\frac{1}{(x-y)^{2\beta'}}}\,,\quad \left(a(\beta) = \frac{\Gamma(\beta')}{\pi^{D/2}\,2^{2\beta}\,\Gamma(\beta)}\right).$$

where $\beta' = D/2 - \beta$ and $\Gamma(\beta)$ is the Euler gamma-function.

For $\hat{q}^{2\alpha}$ the "matrix representation" is: $\langle x|\hat{q}^{2\alpha}|y\rangle=x^{2\alpha}\delta^D(x-y)$.

7 / 25

Algebraic relations (a,b,c) which are helpful for analytical calculations of perturbative integrals for multi-loop F.D. \Rightarrow reconstruction of graphs

a. Group relation. Consider a convolution product of two propagators:

$$\int \frac{d^D z}{(x-z)^{2\alpha}(z-y)^{2\beta}} = \frac{G(\alpha',\beta')}{(x-y)^{2(\alpha+\beta-D/2)}}, \quad \left(G(\alpha,\beta) = \frac{a(\alpha+\beta)}{a(\alpha)a(\beta)}\right),$$

which leads to the reconstruction of graph:

$$x \xrightarrow{\alpha} \xrightarrow{\beta} y = G(\alpha', \beta') \cdot x \xrightarrow{\alpha+\beta-\frac{D}{2}} y$$

This is the "matrix representation" of the operator relation

$$\hat{p}^{-2\alpha'}\,\hat{p}^{-2\beta'}=\hat{p}^{-2(\alpha'+\beta')}.$$

Proof.

$$\int d^{D}z \langle x|\hat{p}^{-2\alpha'}|z\rangle \langle z|\hat{p}^{-2\beta'}|y\rangle = \langle x|\hat{p}^{-2(\alpha'+\beta')}|y\rangle$$

Algebraic relations (a,b,c) which are helpful for analytical calculations of perturbative integrals for multi-loop F.D. \Rightarrow reconstruction of graphs

a. Group relation. Consider a convolution product of two propagators:

$$\int \frac{d^D z}{(x-z)^{2\alpha}(z-y)^{2\beta}} = \frac{G(\alpha',\beta')}{(x-y)^{2(\alpha+\beta-D/2)}}, \quad \left(G(\alpha,\beta) = \frac{a(\alpha+\beta)}{a(\alpha)a(\beta)}\right),$$

which leads to the reconstruction of graph:

$$x \stackrel{\alpha}{=} y = G(\alpha', \beta') \cdot x \stackrel{\alpha+\beta-\frac{D}{2}}{=} y$$

This is the "matrix representation" of the operator relation

$$\hat{
ho}^{-2lpha'}\,\hat{
ho}^{-2eta'}=\hat{
ho}^{-2(lpha'+eta')}.$$

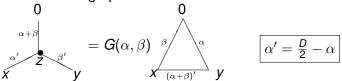
Proof.

$$\int d^D z \langle x | \hat{p}^{-2\alpha'} | z \rangle \langle z | \hat{p}^{-2\beta'} | y \rangle = \langle x | \hat{p}^{-2(\alpha' + \beta')} | y \rangle$$

b. Star-triangle relation The "Method Of Uniqueness" (D.Kazakov, 1983) (Yang-Baxter equation)

$$\int \frac{d^Dz}{(x-z)^{2\alpha'}\,z^{2(\alpha+\beta)}\,(z-y)^{2\beta'}} = \frac{G(\alpha,\beta)}{(x)^{2\beta}\,(x-y)^{2(\frac{D}{2}-\alpha-\beta)}\,(y)^{2\alpha}}\;.$$

Reconstruction of graph:



Operator version:

$$\hat{
ho}^{-2lpha}\hat{q}^{-2(lpha+eta)}\hat{
ho}^{-2eta}=\hat{q}^{-2eta}\hat{
ho}^{-2(lpha+eta)}\hat{q}^{-2lpha}$$

Compare with Yang-Baxter equation:

$$S(\alpha)\widetilde{S}(\alpha+\beta)S(\beta) = \widetilde{S}(\beta)S(\alpha+\beta)\widetilde{S}(\alpha)$$

9 / 25

Remarks on star-triangle relation:

1. STR is a commutativity condition for the set of operators $H_{\alpha} = \hat{p}^{2\alpha} \hat{q}^{2\alpha}$:

$$\hat{p}^{2\gamma}\hat{q}^{2\gamma} \; \hat{p}^{2\alpha}\hat{q}^{2\alpha} = \hat{p}^{2\alpha}\hat{q}^{2\alpha} \; \hat{p}^{2\gamma}\hat{q}^{2\gamma} \Rightarrow$$

$$\hat{p}^{2(\gamma-\alpha)}\hat{q}^{2\gamma} \; \hat{p}^{2\alpha} = \hat{q}^{2\alpha} \; \hat{p}^{2\gamma}\hat{q}^{2(\gamma-\alpha)} \Rightarrow \text{STR for } \gamma = \alpha + \beta \; .$$

2. Algebraic proof of the STR. Introduce inversion operator *R*:

$$R^{2} = 1 , \quad \langle x_{i} | R = \langle \frac{x_{i}}{x^{2}} |$$

$$R\hat{q}_{i}R = \hat{q}_{i} / \hat{q}^{2} , \quad R\hat{p}_{i}R = \hat{q}^{2} \hat{p}_{i} - 2 \hat{q}_{i} (\hat{q} \hat{p}) =: K_{i} ,$$

$$R \hat{p}^{2\beta} R = \hat{q}^{2(\beta + \frac{D}{2})} \hat{p}^{2\beta} \hat{q}^{2(\beta - \frac{D}{2})} .$$

Proof.

$$\begin{array}{ll} \textit{R}\,\hat{p}^{2\alpha}\,\hat{p}^{2\beta}\,\textit{R} & = \textit{R}\,\hat{p}^{2(\alpha+\beta)}\,\textit{R} \ \Rightarrow \ \hat{p}^{2\alpha}\hat{q}^{2(\alpha+\beta)}\,\hat{p}^{2\beta} = \hat{q}^{2\beta}\,\hat{p}^{2(\alpha+\beta)}\hat{q}^{2\alpha} \\ & \uparrow \\ \textit{P}^{2} \end{array}$$

3. One can deduce "local" STR which is related to the α -representation for FD (*R.Kashaev*, 1996)

$$W(x^2|\alpha) = \exp\left(-\frac{x^2}{2\alpha}\right)$$

$$W(\hat{q}^2|\alpha_1) W(\hat{p}^2|\frac{1}{\alpha_2}) W(\hat{q}^2|\alpha_3) = W(\hat{p}^2|\frac{1}{\beta_3}) W(\hat{q}^2|\beta_2) W(\hat{p}^2|\frac{1}{\beta_1})$$

where $\alpha_i = \frac{\beta_1\beta_2 + \beta_1\beta_3 + \beta_2\beta_3}{\beta_i}$ is a star-triangle transformation for resistances in electric networks

()

c. Integration by parts rule. (F. Tkachov, K. Chetyrkin, 1981)

It can be represented in the operator form:

$$(2\gamma - \alpha - \beta) \, \hat{p}^{2\alpha} \hat{q}^{2\gamma} \hat{p}^{2\beta} = \frac{[\hat{q}^2, \, \hat{p}^{2(\alpha+1)}]}{4(\alpha+1)} \, \hat{q}^{2\gamma} \, \hat{p}^{2\beta} - \hat{p}^{2\alpha} \hat{q}^{2\gamma} \frac{[\hat{q}^2, \, \hat{p}^{2(\beta+1)}]}{4(\beta+1)} \, \boxed{\hspace{1cm}}$$

where $\alpha = -\alpha'_1$, $\gamma = -\alpha_2$ and $\beta = -\alpha'_3$.

←□▶←□▶←□▶←□▶ □ ♥Q

The integration by parts identity

$$(2\gamma - \alpha - \beta) \, \hat{p}^{2\alpha} \hat{q}^{2\gamma} \hat{p}^{2\beta} = \frac{[\hat{q}^2, \, \hat{p}^{2(\alpha+1)}]}{4(\alpha+1)} \, \hat{q}^{2\gamma} \, \hat{p}^{2\beta} - \hat{p}^{2\alpha} \hat{q}^{2\gamma} \frac{[\hat{q}^2, \, \hat{p}^{2(\beta+1)}]}{4(\beta+1)} \, ,$$

can be proved by using relations for Heisenberg algebra

$$\begin{split} \left[\hat{q}^2,\,\hat{p}^{2(\alpha+1)}\right] &= 4\left(\alpha+1\right)\left(H+\alpha\right)\hat{p}^{2\alpha}\;,\\ H\,\hat{q}^{2\alpha} &= \hat{q}^{2\alpha}\left(H+2\alpha\right)\;,\quad H\,\hat{p}^{2\alpha} &= \hat{p}^{2\alpha}\left(H-2\alpha\right)\;, \end{split}$$

where $H:=\frac{\mathrm{i}}{2}(\hat{p}_i\hat{q}_i+\hat{q}_i\hat{p}_i)$ is the dilatation operator.

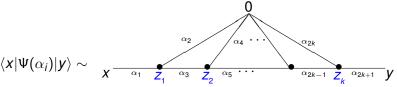
The set of operators $\{\hat{q}^2, \hat{p}^2, H\}$ generates the algebra s/(2).

An example of the operator representation for F.D.

Consider an operator:

$$\Psi(\alpha_i) = \hat{p}^{-2\alpha_1'} \, \hat{q}^{-2\alpha_2} \, \hat{p}^{-2\alpha_3'} \, \hat{q}^{-2\alpha_4} \, \hat{p}^{-2\alpha_5'} \cdots \hat{q}^{-2\alpha_{2k}} \, \hat{p}^{-2\alpha_{2k+1}'} \, .$$

This operator is the algebraic version of 3-point function:



Indeed,

$$\langle x|\Psi(\alpha_i)|y\rangle = \langle x|\hat{p}^{-2\alpha'_1} \hat{q}^{-2\alpha_2} \hat{p}^{-2\alpha'_2} \hat{q}^{-2\alpha'_3} \hat{q}^{-2\alpha_4} \hat{p}^{-2\alpha'_5} \cdots \hat{q}^{-2\alpha_{2k}} \hat{p}^{-2\alpha'_{2k+1}}|y\rangle$$

$$\int d^D z_1|z_1\rangle\langle z_1| \int d^D z_2|z_2\rangle\langle z_2| \int d^D z_k|z_k\rangle\langle z_k|$$

Remark. $\langle x|\Psi(\alpha_i)|x\rangle$ represents the propagator-type diagrams.

The advantage: we change the manipulations with integrals by the manipulations with elements of the algebra generated by $\hat{p}^{2\alpha}, \hat{q}^{2\beta}$.

Is it possible to define the trace for this algebra?

$$\operatorname{Tr}(\Psi(\alpha_i)) = \int \!\! d^D x \langle x | \hat{\boldsymbol{p}}^{-2\alpha_1'} \, \hat{\boldsymbol{q}}^{-2\alpha_2} \, \hat{\boldsymbol{p}}^{-2\alpha_3'} \cdot \cdot \cdot \hat{\boldsymbol{q}}^{-2\alpha_{2k}} \, \hat{\boldsymbol{p}}^{-2\alpha_{2k+1}'} | x \rangle = \boldsymbol{c}(\alpha_i) \int \!\! \frac{d^D x}{x^{2\beta}}.$$

 $(\beta = \sum_i \alpha_i; \ c(\alpha_i)$ - coeff. function). The dim. reg. procedure requires:

$$\int \frac{d^D x}{x^{2(D/2+\alpha)}} = 0 \quad \forall \alpha \neq 0 .$$

The extension of the definition of this integral is (S.Gorishnii, A.Isaev, 1985)

$$\int \frac{d^D x}{x^{2(D/2+\alpha)}} = \pi \Omega_D \delta(|\alpha|) ,$$

where $\Omega_D = 2\pi^{D/2}/\Gamma(D/2)$, $\alpha = |\alpha|e^{i\arg(\alpha)}$. Then, the cyclic property of "Tr" can be checked. "Tr": propagators \Rightarrow vacuum diagrams.

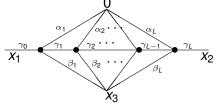
15 / 25

L-loop ladder diagrams for ϕ^3 FT \Leftrightarrow *D*-dimensional conformal QM

Consider dimensionally and analytically regularized massless integrals

$$D_{L}(p_{0}, p_{L+1}, p; \vec{\alpha}, \vec{\beta}, \vec{\gamma}) = \left[\prod_{k=1}^{L} \int \frac{d^{D}p_{k}}{p_{k}^{2\alpha_{k}} (p_{k} - p)^{2\beta_{k}}} \right] \prod_{m=0}^{L} \frac{1}{(p_{m+1} - p_{m})^{2\gamma_{m}}}$$

which correspond to the diagrams $(x_1 = p_0, x_2 = p_{L+1}, x_3 = p)$:



The diagrams (in config. and moment. spaces) are dual to each other (the boldface vertices correspond to the loops). The operator version is

$$D_L(x_a; \vec{lpha}, \vec{eta}, \vec{\gamma}) \sim \langle x_1 | \hat{p}^{-2\gamma_0'} \left(\prod_{k=1}^L \hat{q}^{-2\alpha_k} (\hat{q} - x_3)^{-2\beta_k} \hat{p}^{-2\gamma_k'} \right) | x_2 \rangle \ .$$

←□ → ←□ → ←필 → ←필 → ○필 → ○

For simplicity we put $\alpha_i = \alpha$, $\beta_i = \beta$, $\gamma_i = \gamma$ and consider the generating function for D_L :

$$D_g(x_a;\alpha,\beta,\gamma) = \sum_{L=0}^{\infty} g^L D_L(x_a;\alpha,\beta,\gamma) \sim \langle x_1 \mid \left(\hat{p}^{2\gamma'} - \frac{\bar{g}}{\hat{q}^{2\alpha}(\hat{q} - x_3)^{2\beta}}\right)^{-1} \mid x_2 \rangle$$

where $\bar{g}=g/a(\gamma')$ is the renormalized coupling constant. For the case $\alpha+\beta=2\gamma'$, using inversions, etc. we obtain

$$D_g \sim \langle u \mid \left(\hat{p}^{2\gamma'} - \frac{g_x}{\hat{q}^{2\beta}} \right)^{-1} \mid v \rangle ,$$

where $g_x = \bar{g}(x_3)^{-2\beta}$, $u_i = \frac{(x_1)_i}{(x_1)^2} - \frac{(x_3)_i}{(x_3)^2}$, $v_i = \frac{(x_2)_i}{(x_2)^2} - \frac{(x_3)_i}{(x_3)^2}$.

The ϕ^3 -theory for D=4 is related to $\gamma'=1=\beta$ and we obtain the Green's function for conformal QM:

$$D_g \sim \langle u \, | \, \left(\hat{p}^2 - rac{g_x}{\hat{q}^2}
ight)^{-1} \, | \, v
angle \; ,$$

For $D \neq 4$ this GF \Rightarrow ladder diagrams for $\alpha = \beta = 1, \gamma = \frac{D}{2} - 1$.

17 / 25

Our method is based on the identity:

$$\frac{1}{\hat{p}^2 - g/\hat{q}^2} = \sum_{L=0}^{\infty} \left(-\frac{g}{4} \right)^L \left[\hat{q}^{2\alpha} \frac{(H-1)}{(H-1+\alpha)^{L+1}} \frac{1}{\hat{p}^2} \, \hat{q}^{-2\alpha} \right]_{\alpha^L}$$

where we denote $[\ldots]_{\alpha^L} = \frac{1}{L!} \left(\partial_{\alpha}^L \left[\ldots \right] \right)_{\alpha=0}$. Taking into account

$$\frac{(H-1)}{(H-1+\alpha)^{L+1}} = \frac{(-1)^{L+1}}{L!} \int_0^\infty dt \, t^L \, e^{t\alpha} \, \partial_t \left(e^{t(H-1)} \right)$$

and $e^{t(H+\frac{D}{2})}|x\rangle=|e^{-t}x\rangle$ the Green's function D_g is written in the form

$$\langle u | \frac{1}{(\hat{p}^2 - g_x/\hat{q}^2)} | v \rangle = \sum_{L=0}^{\infty} \frac{1}{L!} \left(\frac{g_x}{4} \right)^L \Phi_L(u, v) ,$$

$$\Phi_L(u,v) = -a(1) \int_0^\infty dt \, t^L \left[\left(\frac{u^2}{v^2} \right)^\alpha e^{t\alpha} \right]_{\alpha^L} \partial_t \left(\frac{e^{-t}}{(u-e^{-t}v)^2} \right)^{(\frac{D}{2}-1)}$$

For $D=4-2\epsilon$ one can expand $\Phi_L(u,v)$ over small ϵ :

$$\Phi_L(u,v) = \frac{\Gamma(1-\epsilon)}{4\pi^{2-\epsilon}u^{2(1-\epsilon)}} \sum_{k=0}^{\infty} \frac{\epsilon^k}{k!} \, \Phi_L^{(k)}(z_1,z_2) \; .$$

where $z_1 + z_2 = 2(uv)/u^2$ and $z_1z_2 = v^2/u^2$. The coeff. functions $\Phi_L^{(k)}$ are expressed in terms of multiple polylogarithms. The first one is (N.I. Ussyukina and A.I. Davydychev; D.J. Broadhurst; 1993)

$$\Phi_L^{(0)}(z_1,z_2) = \frac{1}{z_1-z_2} \sum_{f=0}^{L} \frac{(-)^f (2L-f)!}{f! (L-f)!} \ln^f(z_1z_2) \left[\operatorname{Li}_{2L-f}(z_1) - \operatorname{Li}_{2L-f}(z_2) \right].$$

where polylogs are

$$\operatorname{Li}_m(w) = \sum_{n=1}^{\infty} \frac{w^n}{n^m}.$$

(□) (□) (□) (□) (□) (□) (□)

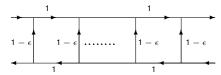
The next coefficient is: $\Phi_L^{(1)}(z_1, z_2) =$

$$= \sum_{n=L}^{2L} \frac{n! \ln^{2L-n}(z_1 z_2) \left[(n \operatorname{Li}_{n+1}(z_1) - \operatorname{Li}_{n,1}(z_1, 1) - \operatorname{Li}_{n,1}(z_1, \frac{z_2}{z_1})) - (z_1 \leftrightarrow z_2) \right]}{(-1)^n (2L-n)! (n-L)! (z_1 - z_2)},$$

where multiple polylogarithms are

$$\operatorname{Li}_{m_0,m_1,\ldots,m_r}(w_0,w_1,\ldots,w_r) = \sum_{n_0>n_1>\cdots>n_r>0} \frac{w_0^{n_0}w_1^{n_1}\cdots w_r^{n_r}}{n_0^{m_0}n_1^{m_1}\ldots n_r^{m_r}}.$$

The function $\Phi_L^{(1)}(z_1, z_2)$ gives the first term in the expansion over ϵ of the L-loop ladder diagram (with special indices on the lines)



()

5. Application: magic identities for ladder FD

Conformal properties for GF of CM give $(\forall \beta, \gamma)$

$$\frac{1}{u^{2(\gamma-\frac{D}{2})}}\langle u|\left(\hat{p}^{2\gamma}-g\frac{(u^2v^2)^{\frac{\beta}{2}}}{\hat{q}^{2(\beta+\gamma)}}\right)^{-1}|v\rangle=\frac{1}{(u')^{2(\gamma-\frac{D}{2})}}\langle u'|\left(\hat{p}^{2\gamma}-g\frac{(u'^2v'^2)^{\frac{\beta}{2}}}{\hat{q}^{2(\beta+\gamma)}}\right)^{-1}|v'\rangle},$$

where u_i, v_i, u_i', v_i' are such that $\frac{v^2}{u^2} = \frac{(v')^2}{(u')^2}, \frac{(u-v)^2}{u^2} = \frac{(u'-v')^2}{(u')^2}$. We take

$$U = \frac{1}{x_1} - \frac{1}{x_3}, V = \frac{1}{x_2} - \frac{1}{x_3}, U' = \frac{1}{x_1} - \frac{1}{x_{12}}, V' = \frac{1}{x_{13}} - \frac{1}{x_{12}} \left(\frac{1}{x} \right)_i = \frac{(x)_i}{x^2}, X_{ij} = X_i - X_j$$

expand over g to obtain identities for L-box FD in order g^L :

$$\frac{\widetilde{u}^{L\beta}}{x_3^{D-2(\gamma+\gamma L)}} \times \begin{array}{c} x_1 - x_3 & \gamma+\beta & \gamma+\beta & \dots & x_2 - x_3 \\ \hline \widetilde{v}^{L\beta} & & & & \\ x_1 & \gamma-\beta & \gamma-\beta & \dots & x_2 \end{array} = \begin{array}{c} x_1 - x_3 & \gamma' & x_2 - x_3 \\ \hline \widetilde{v}^{D} & & & \\ \hline x_{12}^{D-2(\gamma+\gamma L)} & \times \\ \hline & & & \\ x_1 & \gamma' & x_2 \end{array}$$

where $\widetilde{u} = \frac{x_{13}^2 x_{23}^2}{x_1^2 x_2^2}$, $\widetilde{v} = \frac{x_2^2 x_{23}^2}{x_1^2 x_{13}^2}$; $\gamma \pm \beta$ and $\gamma' = \frac{D}{2} - \gamma$ are special indices on the lines and x_1, x_2, x_3 parameterize external momenta.

Case $D=4, eta=0, \gamma=1\Leftrightarrow$ (J.M. Drummond, J. Henn, V.A. Smirnov, E. Sokatchev) $_{\text{loc}}$

6. Application to Lipatov's model

Lipatov's model is described by the Hamiltonian $H = \sum_{i=1}^{n} H_{ii+1}$, where

$$H_{ik} = \left[\hat{p}_i \ln(\rho_{ik}) \hat{p}_i^{-1} + \hat{p}_k \ln(\rho_{ik}) \hat{p}_k^{-1} + \ln(\hat{p}_i \hat{p}_k) - 2\psi(1) \right] = (1)$$

$$= 2 \ln(\rho_{ik}) + \rho_{ik} \ln(\hat{p}_i \hat{p}_k) \rho_{ik}^{-1} - 2\psi(1) .$$
 (2)

 $\psi(1)$ - constant, $\rho_{ik}=q_i-q_k$, q_i - coordinates, $\hat{p}_i=-i\frac{\partial}{\partial q_i}$ - momenta. Expression (2) appears in the expansion over ϵ of the R- operator

$$R_{ik}(\epsilon) := \rho_{ik}^{1+\epsilon} (\hat{p}_i \hat{p}_k)^{\epsilon} \rho_{ik}^{-1+\epsilon} = 1 + \epsilon \left(2 \ln(\rho_{ik}) + \rho_{ik} \ln(\hat{p}_i \hat{p}_k) \rho_{ik}^{-1} \right) + \epsilon^2 \dots$$

One-dimensional analog of the operator "star-triangle" identity:

$$\rho_{ik}^{\alpha} \, \hat{\rho}_{i}^{\alpha+\beta} \, \rho_{ik}^{\beta} = \hat{\rho}_{i}^{\beta} \, \rho_{ik}^{\alpha+\beta} \, \hat{\rho}_{i}^{\alpha} \iff \rho_{ki}^{\alpha} \, \hat{\rho}_{i}^{\alpha+\beta} \, \rho_{ki}^{\beta} = \hat{\rho}_{i}^{\beta} \, \rho_{ki}^{\alpha+\beta} \, \hat{\rho}_{i}^{\alpha} \, \right].$$

Then, we have:
$$R_{ik}(\epsilon) =$$

$$= \rho_{ik}^{1+\epsilon} (\hat{p}_i \hat{p}_k)^{\epsilon} \rho_{ik}^{-1+\epsilon} = \rho_{ik}^{1+\epsilon} \hat{p}_i^{\epsilon} \rho_{ik}^{-1} \rho_{ik}^{1} \hat{p}_k^{\epsilon} \rho_{ik}^{-1+\epsilon} = \hat{p}_i^{-1} \rho_{ik}^{\epsilon} \hat{p}_i^{1+\epsilon} \hat{p}_k^{-1+\epsilon} \rho_{ik}^{\epsilon} \hat{p}_k^{1}$$

$$= 1 + \epsilon \left(\hat{p}_i^{-1} \ln(\rho_{ik}) \hat{p}_i + \hat{p}_k^{-1} \ln(\rho_{ik}) \hat{p}_k + \ln(\hat{p}_i \hat{p}_k) \right) + \epsilon^2 \dots$$

22 / 25

6. Application to Lipatov's model

The operator $R_{ik}(\epsilon) := \rho_{ik}^{1+\epsilon}(\hat{p}_i\hat{p}_k)^{\epsilon}\rho_{ik}^{-1+\epsilon}$ satisfies the Yang-Baxter equation

$$R_{i\,i+1}(\epsilon)\,R_{i+1\,i+2}(\epsilon+\epsilon')\,R_{i\,i+1}(\epsilon') = R_{i+1\,i+2}(\epsilon')\,R_{i\,i+1}(\epsilon+\epsilon')\,R_{i+1\,i+2}(\epsilon)\,.$$

The complete holomorphic Hamiltonian $H = \sum_{i=1}^{n} H_{ii+1}$ appears in the expansion over ϵ of the monodromy matrix (S.E. Derkachov and A.N.Manashov)

$$T_{(1,2,\ldots,n+1)}(\epsilon) = R_{12}(\epsilon) R_{23}(\epsilon) R_{34}(\epsilon) \cdots R_{nn+1}(\epsilon) .$$

23 / 25

Summary

- Applications of the coefficients Φ_L(u, v) for the avaluations of 4-point functions in N = 4 SYM theory.
- Lipatov's integrable model describes high energy scattering of hadrons in QCD.
- Generalizations to massive case and to supersymmetric case. In massive case it is tempting to calculate the Green's function

$$\langle u | \frac{1}{(\hat{p}^2 - g/\hat{q}^2 + m^2)} | v \rangle = \sum_{L=0}^{\infty} g^L \, \Phi_L(u, v; m^2) \; ,$$

 It seems that the approach is not universal even for massless FDs. We should add something new.

()

For Further Reading I

Quantum groups and Yang-Baxter equations, EChAYa, 26 No.5 (1995) 1204; preprint MPIM (Bonn), MPI 2004-132 (2004), (http://www.mpim-bonn.mpg.de/html/preprints/preprints.html)

A.P. Isaev.

Multi-Loop Feynman Integrals and Conformal Quantum Mechanics. Nucl. Phys. **B662** (2003) 461 (hep-th/0303056)

A.P. Isaev.

Operator approach to analytical evaluation of Feynman diagrams, arXiv:0709.0419 [hep-th]