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Motivations

• IIB superstrings onAdS5×S5; difficulties at the quantum level

• The analog (Metsaev, Thorn, Tseytlin, 01) of the flat space
light-cone gauge breaks the 2d Lorentz invariance. This makes
it hard to apply the standard methods of 2d intergable fields
theories.

• Another approach: FR reduction (Fadeev-Reshetikhin 86) (known
in the case of S3-sigma model) also breaks 2d Lorentz. Not
clear how to generalize to other cosets.

• Remarkably, for rather general coset models there is an alter-
native – Pohlmeyer reduction. Although intermediate steps are
not Lorentz invariant the resulting action is.

• Generalization toAdS5×S5 andAdS2×S2 (M.G., A. Tseytlin,
07)



• Known cases: superstrings on AdSn × Sn for n = 2, 3, 5.
n = 5 too complicated, n = 2 too simple but promissing (gives
N = 2 susy sine-Gordon model)

• Can be intersting to study AdS3×S3 as a kind of full-featured
but still explicitly manageable example. However, the structure
is slightly different and the procedure should be modified.



Pohlmeyer reduction
Pohlmeyer, 1976

S2-sigma model:

S =
1

4πα

∫
d2σ ∂+X

m∂−X
m − Λ(XmXm − 1) , m = 1, 2, 3

Equations of motion:

∂+∂−X
m + ΛXm = 0 , Λ = ∂+X

m∂−X
m , XmXm = 1

Stress tensor:

T±± = ∂±X
m∂±X

m, T+− = 0

Stress tensor conservation

∂+T−− = 0 , ∂−T++ = 0

implies: T++ = f(σ+),T−− = h(σ−) so that using the appropriate
conformal transformation one can achieve:

∂+X
m∂+X

m = µ2 , ∂−X
m∂−X

m = µ2 , µ = const .



We then have 3 unit vectors in 3-dimensional Euclidean space:

Xm , Xm
+ = µ−1∂+X

m , Xm
− = µ−1∂−X

m ,

In fact Xm is orthogonal (Xm∂±X
m = 0) to both Xm

+ and Xm
−

and therefore is not independent. The only SO(3) invariant quantity
is then

µ2 cos 2ϕ = ∂+X
m∂−X

m .

The equations of motion imply ∂+∂−ϕ + µ2

2 sin 2ϕ = 0 following
from

L̃ = ∂+ϕ∂−ϕ+
µ2

2
cos 2ϕ

– sine-Gordon model(SG).



Analogous consideration for S3 = SO(4)/SO(3) leads to

L̃CSG = ∂+ϕ∂−ϕ+ tan2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ

– Complex sine-Gordon model (CSG).
Here ϕ, θ are the following SO(4)-invariants:

µ2 cos 2ϕ = ∂+X
m∂−X

m

µ3 sin2 ϕ ∂±θ = ∓1
2
εmnklX

m∂+X
n∂−X

k∂2
±X

l

Instead of sigma model on Sn one can consider bosonic strings on
Sn × R1 and use the gauge t = µτ along with the conformal gauge.
The conditions

∂±X
m∂±X

m = µ2

are then the Virasoro constraints.



Comments:

• Virasoro constraints are solved by a special choice of variables
related nonlocally to the original coordinates

• Although the reduction is not explicitly Lorentz invariant the
resulting Lagrangian turns out to be 2d Lorentz invariant

• The reduced theory is formulated in terms of manifestly SO(n)
invariant variables “blind” to the original global symmetry

• The reduced theory is equivalent to the original theory as an
integrable system: the respective Lax connections are gauge-
equivalent

• PR may be thought of as a formulation in terms of physical
d.o.f. – coset space analog of flat-space l.c. gauge (in the
known l.c. gauges for AdS5 × S5 the 2d Lorentz is broken)

• In general the reduced theory is not quantum-equivalent to the
original one (e.g., conformal symmetry was assumed in the re-
duction procedure)



Pohlmeyer reduction of the F/G-coset models

For SO(3)/SO(2) or SO(4)/SO(3) it is not needed. But we
need higher dimensions and better understanding.
F/G-coset sigma model:
Let f, g – respective Lie algebras. The symmetric space condition
(Z2-grading)

f = p⊕ g , [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g

along with 〈g, p〉 = 0 (in our setting 〈a, b〉 = Tr(ab)).
The Lagrangian:

L = −Tr(P+P−) , P± = (f−1∂±f)p ,

where

J = f−1df = A+ P , A = Jg ∈ g , P = Jp ∈ p .

G gauge transformation f → fg; global F -symmetry: f → f0f for
any constant f0 ∈ F ; conformal invariance.



First step: equations of motion in terms of currents

Pohlmeyer, Lund, Rehren, Regge, D’Auria, Sciutto, Eichenherr, Forger...

The fundamental variables are now J = A + P . The full set of
equations of motion involves now:

D+P− = 0 , D−P+ = 0 – Equations of motion

− 1

2
Tr(P+P+) = µ2 , −1

2
Tr(P−P−) = µ2 – Virasoro const.

D−P+ −D+P− + [P+, P−] + [A−,A+] = 0 – Maurer-Cartan

Here e.g. D+P− = ∂+P− + [A+, P−].
Main idea: – first solve EOMs and Virasoro using special choice of
G gauge condition and special parametrization of currents
Then find reduced action giving eqs. resulting from MC

Special gauge where the first Virasoro constraint is solved by

P+ = µ T , µ = const ∈ R

T = const ∈ p = f	 g, Tr(TT ) = −1
“polar decomposition” theorem.



Lie algebra decomposition

The choice of an element T determines the following decomposi-
tion (a = {T})

f = p⊕ g , p = a⊕ n , g = m⊕ h , [a, a] = 0 ,

such that

[m,m] ⊂ h , [m, h] ⊂ m , [m, a] ⊂ n , [a, n] ⊂ m .

i.e. h is a centraliser of T in g.

Well-known “triple” of Lie groups for F/G coset sigma model:

H ⊂ G ⊂ F

(Bakas et all, Miramontes et all)



New parametrization

Using the decomposition above the first EOM D−P+ = 0 is
solved by A− = A− ∈ h

The second Virasoro constraint is solved by

P− = µg−1Tg

with g being a new G-valued field.
Finally, the EOM D+P− = 0 is solved by

A+ = g−1∂+g + g−1A+g , h-valued A+

.
To summarise:
we have solved all EOMs and Virasoro constraints. The new

parametrisation is in terms of

G-valued field g, h-valued fields A+, A−.

The only remaining equation is the Maurer-Cartan equation.



Relation to gauged WZW model

Maurer-Cartan equation in terms of new parametrization:

∂−(g−1∂+g + g−1A+g)− ∂+A−

+ [A−, g−1∂+g + g−1A+g] + µ2[g−1Tg, T ] = 0

Recall: P+ = µT , P− = µ g−1Tg ,

A+ = g−1∂+g + g−1A+g , A− = A−

MC eq. has “on-shell” H ×H gauge symmetry:

g → h−1gh̄ ,

A+ → h−1A+h+ h−1∂+h , A− → h̄−1A−h̄+ h̄−1∂−h̄ ,

can choose a gauge:

A+ = (g−1∂+g + g−1A+g)h, A− = (g∂−g−1 + gA−g
−1)h



G/H gWZW action with potential: (Bakas, Park, Shin 95)

L = − 1

2
Tr(g−1∂+gg

−1∂−g) + WZ term

− Tr
(
A+ ∂−gg

−1 −A− g
−1∂+g − g−1A+gA− +A+A−

)
− µ2Tr(Tg−1Tg)

Remains left-right H gauge symmetry: h = h̄.

– Action and gauge symmetries of the Pohlmeyer-reduced theory
for F/G coset sigma model . Also for strings onRt×F/G or F/G×
S1
ψ

integrable potential: relation at the level of Lax pairs
special case of non-abelian Toda theory:
“symmetric space Sine-Gordon model”
(Fernandez-Pousa, Gallas, Hollowood, Miramontes 96)



Structure of the action

The action of the reduced theory can be written as:

L = LgWZW + Ladd , Ladd = −Tr(P+P−)

where
P+ = P+(g) = µT , P− = µg−1Tg

Note:
Ladd – original Lagrangian of the F/G coset model
written in terms of new parametrization.

LgWZW – the Lagrangian of the gauged WZW model
encoding the MC equation



Elimination of A±

A±–auxiliary fields. What to do about A+, A−: integrate out or
gauge-fix?

Gauge A± = 0: reduced EOM’s in the “on-shell” gauge:

On-shell ∂−A+ − ∂+A− + [A−, A+] = 0 so can set A± = 0

∂−(g−1∂+g)− µ2[T, g−1Tg] = 0 ,

(g−1∂+g)h = 0 , (∂−gg−1)h = 0 .

F/G = SO(n+1)/SO(n) = Sn : G/H = SO(n)/SO(n− 1)

Parametrising g as

g =

 k1 k2 . . . kn
. . . . . . . . . . . .
. . . . . . . . . . . .

 ,

n∑
1=1

klkl = 1



One gets (in general non-Lagrangian) EOM for km

∂−
∂+k`√

1−
∑n
m=2 kmkm

= −µ2k` , ` = 2, . . . , n .

Linearising around the vacuum g = 1 (i.e. k1 = 1, k` = 0)

∂+∂−k` + µ2k` +O(k2
` ) = 0

Massive spectrum, H = SO(n− 1) global symmetry



Integrating out A±: gauge condition on g field
F/G = SO(n+ 1)/SO(n) = Sn: parametrization of g
in terms of Euler angles

g = eTn−1θn−1 ...eT2θ2e2TϕeT2θ2 ...eTn−1θn−1

and integrating out H = SO(n− 1) gauge field A±
leads to reduced theory that generalizes SG and CSG

L̃ = ∂+ϕ∂−ϕ+Gpq(ϕ, θ)∂+θ
p∂−θ

q +
µ2

2
cos 2ϕ

no Bmn coupling
similar for F/G = SO(2, n− 1)/SO(1, n− 1) = AdSn case:
G/H = SO(1, n− 1)/SO(n− 1)

For n = 2, 3: SG and CSG models
and their AdS counterparts.
For n = 4, 5 explicit Gpq were given in

(Fradkin, Linetsky ; Bars, Sfetsos 91-92)



Bosonic strings on AdSn × Sn

The Lagrangian and the Virasoro constraints:

LAS = Tr(PA+P
A
− )−Tr(PS+P

S
−) , Tr(PS±P

S
±)−Tr(PA±P

A
± ) = 0

Using the conformal transformation one can assume

−1

2
Tr(PS±P

S
±) = −1

2
Tr(PA±P

A
± ) = µ2

The rest of the Pohlmeyer reduction goes in each sector indepen-
dently giving the direct product of the reduced systems for Sn and
AdSn respectively.
Except for µ the AdSn and Sn sectors do not see each other.

Example: in the case of AdS2 × S2 one gets:

LAdS2×S2
= ∂+ϕ∂−ϕ+ ∂+φ∂−φ+

µ2

2
(cos 2ϕ− cosh 2φ)

Note that for some n (e.g. n = 2, 3, 5) one can also use the represen-
tation by unitary matrices instead of orthogonal ones. For instance
SG corresponds to SU(2)/U(1)



AdS5 × S5 superstring sigma-model
AdS5 × S5 = SU(2,2)

Sp(2,2) ×
SU(4)
Sp(4)

supercoset GS sigma model (Metsaev, Tseytlin, 98)

F̂

G
=

PSU(2, 2|4)
Sp(2, 2)× Sp(4)

basic superalgebra f̂ = psu(2, 2|4)
bosonic part f = su(2, 2)⊕ su(4) ∼= so(2, 4)⊕ so(6)
admits Z4-grading: (Berkovits, Bershadsky, et al 89)

f̂ = f̂0 ⊕ f̂1 ⊕ f̂2 ⊕ f̂3 , [̂fi, f̂j ] ⊂ f̂i+jmod 4

f̂0 = g = sp(2, 2)⊕ sp(4)

current (J = f−1∂af, f ∈ F̂ ) decomposes as

Ja = f−1∂af = Aa +Q1a + Pa +Q2a

A ∈ f̂0, Q1 ∈ f̂1, P ∈ f̂2, Q2 ∈ f̂3 .



GS Lagrangian:

LGS = 1

2
STr(

√
−ggabPaPb + εabQ1aQ2b) ,

Very simple structure – but not standard coset model:
fermionic currents in WZ term only
leads to κ-symmetry:

δκJa = ∂aε+ [Ja, ε], (δκ
√
−ggab)ab = ...

ε = {P(+)a, ik
a
1(−)}+ {P(−)a, ik

a
2(+)}

Conformal gauge:

LGS = STr[P+P− + 1

2
(Q1+Q2− −Q1−Q2+)]

STr(P+P+) = 0 , STr(P−P−) = 0



Pohlmeyer reduction of the AdS5 × S5

superstring

In terms of current J = A+ P +Q1 +Q2

EOM : ∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,
∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 .

Virasoro : STr(P+P+) = 0 , STr(P−P−) = 0

MC : ∂−J+ − ∂+J− + [J−, J+] = 0 .

PR procedure: solve first EOM and Virasoro
κ-gauge condition: Q1− = 0 , Q2+ = 0
solves the last (fermionic) pair of EOM



As in the bosonic case the remaining EOM:

∂+P− + [A+, P−] = 0 , ∂−P+ + [A−, P+] = 0

are solved by fixing the “reduction gauge” and using the conformal
symmetry. Namely one gets:

P+ = µ T , T =
i

2
diag(1, 1,−1,−1|1, 1,−1,−1)

P− = µ g−1Tg , A+ = g−1∂+g + g−1A+g , A− = A−

T defines h by [h, T ] = 0:

h = su(2)⊕ su(2)⊕ su(2)⊕ su(2)

New parametrisation:

G = Sp(2, 2)× Sp(4)− valued field g , h− valued field A±



In the new parametrization MC eqs. become:

∂−(g−1∂+g + g−1A+g)− ∂+A− + [A−, g−1∂+g + g−1A+g]

= −µ2[g−1Tg, T ] + [Q1+, Q2−] ,

∂−Q1+ + [A−, Q1+] =µ[T ,Q2−] ,

∂+Q2− + [g−1∂+g + g−1A+g,Q2−] =µ[g−1Tg,Q1+]

AdS5 and S5 sectors now coupled by fermions
remains residual κ-symmetry to be fixed
use T to generalise decomposition of bosonic part
f = T ⊕ n⊕ h⊕m to superalgebra psu(2, 2|4)

f̂ = f̂‖ ⊕ f̂⊥ , [T, [T, f̂⊥]] = 0

define
Ψ1 = Q1+ , Ψ2 = gQ2−g

−1

Ψ⊥
1 ,Ψ

⊥
2 can be set =0 by residual κ-symmetry



The remaining fermionic components

Ψ
R

=
1
√
µ

Ψ‖
1 , Ψ

L
=

1
√
µ

Ψ‖
2 ,

transform under H ×H as Ψ
R
→ h̄−1Ψ

R
h̄ , Ψ

L
→ h−1Ψ

L
h .

Equations of motion (MC equation) of reduced theory are thus:

∂−(g−1∂+g + g−1A+g)− ∂+A− + [A−, g−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ]− µ[g−1Ψ
L
g,Ψ

R
] ,

[T ,D−Ψ
R
] = −µ(g−1Ψ

L
g)‖ , [T ,D+Ψ

L
] = −µ(gΨ

R
g−1)‖ .

Pohlmeyer reduced system at the level of EOMs



Lagrangian of PR theory for AdS5 × S5 superstring

(MG, Tseytlin 07; similar action: Mikhailov, Schafer-Nameki 07)
fermionic generalization of “gWZW+ potential” theory for
G
H = Sp(2,2)

SU(2)×SU(2) ×
Sp(4)

SU(2)×SU(2)

L = LgWZW(g,A+, A−) + µ2 STr(g−1TgT )
+ STr (Ψ

L
[T ,D+Ψ

L
] + Ψ

R
[T ,D−Ψ

R
])

+ µSTr
(
g−1Ψ

L
gΨ

R

)
Direct sum of PR theories for AdS5 and S5 “glued together” by

components of fermions

L = L̃S5(g,A+, A−) + L̃AdS5(g,A+, A−)
+ ψ

L
D+ψL

+ ψ
R
D+ψR

+ µ (interaction terms)

standard kin. terms for bosons and fermions (cf. GS action)



Comments:

• gWZW model coupled to the fermions interacting minimally
and through the “Yukawa term”

• 8 real bosonic and 16 real fermionic independent variables

• 2d Lorentz invariant with Ψ
R
,Ψ

L
as 2d Majorana spinors

• 2d supersymmetry? yes, at the linearised level, and yes in
AdS2 × S2 case: n = 2 super sine-Gordon

• quadratic in fermions (like susy version of gWZW); integrating
out A± gives quartic fermionic terms (reflecting curvature)

• linearisation of EOM in the gauge A± = 0 around g = 1
describes 8+8 massive bosonic and fermionic d.o.f. with mass
µ: same as in BMN limit. H = [SU(2)]4 global symmetry



The structure of the potential:
Like in the bosonic case:

L = LWZW+Ladd , Ladd = STr(P+P−+1

2
(Q1+Q2−−Q1−Q2+))

where LWZW – Lagrangian of gWZW with fermions and

P+ = µT, P− = µg−1Tg, Q1+ =
√
µΨ

R
, Q2− =

√
µg−1Ψ

L
g

and Q1+ = Q2− = 0 due to the κ-gauge.

Path integral derivation via change from fields to currents?

Lorentz invariance:
Variables Ψ

R
and Ψ

L
originate from Lorentz vectors

(fermionic components of currents).

Consistently assigning the Lorentz transformation properties.
If Ψ

R
,Ψ

L
2d Majorana spinors then L is Lorentz invariant.

(Contrary to the bosonic case where no change is needed)



Example: AdS2 × S2

Explicit parametrisation:

T = 1

2


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 .

g = exp

0BB@
0 φ 0 0
φ 0 0 0
0 0 0 iϕ
0 0 iϕ 0

1CCA =

0BB@
cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 cos ϕ i sin ϕ
0 0 i sin ϕ cos ϕ

1CCA
Fermions:

Ψ
R

=


0 0 0 iγ
0 0 −β 0
0 iβ 0 0
γ 0 0 0

 Ψ
L

=


0 0 0 ρ
0 0 −iν 0
0 ν 0 0
iρ 0 0 0





The Lagrangian (N = 2 supersymmetric sine-Gordon):

Ltot = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ)

+ β∂−β + γ∂−γ + ν∂+ν + ρ∂+ρ

− 2µ [coshφ cosϕ (βν + γρ) + sinhφ sinϕ (βρ− γν)] .

In more conventional (N = 2 susy) terms can be rewritten as:

Ltot = ∂+Φ∂−Φ∗ − |W ′(Φ)|2 + ψ∗
L
∂+ψL

+ ψ∗
R
∂−ψR

+
[
W ′′(Φ)ψ

L
ψ

R
+W ∗′′(Φ∗)ψ∗

L
ψ∗

R

]
.

where

W (Φ) = µ cos Φ , |W ′(Φ)|2 =
µ2

2
(cosh 2φ− cos 2ϕ) .

and
ψ

L
= ν + iρ , ψ

R
= −β + iγ ,



Superstrings on AdS3 × S3

Supercoset:

PSU(1, 1|2)× PSU(1, 1|2)
SU(1, 1)× SU(2)

Rahmfeld, A. Rajaraman; Pesando; Park, Rey, Berkovits, Vafa, Wit-
ten; Metsaev, Tseytlin

Note: AdS3 × S3 ∼= SU(1, 1)× SU(2)

To apply the general scheme one needs to identify the Z4 grading
on

f̂ = psu(1, 1|2)⊕ psu(1, 1|2)

such that f̂0 = su(1, 1)⊕ su(2) ⊂ psu(1, 1|2)⊕ psu(1, 1|2)
Z4 grading was discussed in the literature but we need its matrix

form along with the compatible decomposition f̂ = f̂‖ ⊕ f̂⊥.



Simple example

G - Principal Chiral Model (PCM). It can be identified with

G×G

Ḡ

coset sigma model with Ḡ being diagonal subgroup.

More generally: Ḡ – a subgroup formed by elements of the form
(g, χ̂(g)); χ̂ – automorphism compatible with the trace.

The respective orthogonal decomposition:

f = ḡ⊕ p , g = {(a, χ(a))} , p = {(a,−χ(a))} .

The symmetric space conditions [ḡ, ḡ] ⊂ ḡ, [ḡ, p] ⊂ p, [p, p] ⊂ ḡ
are satisfied.

Under some algebraic conditions (satisfied in the AdS3 or S3

case) one can apply Pohlmeyer reduction.



Pohlmeyer reduction of PCM

Using gauge symmetry and new parametrization:

P+ = µT, P− = µḡ−1T ḡ, T = (t,−χ(t)), ḡ = (g, χ̂(g))

with t in Cartan subalgebra h ⊂ g.
The resulting gWZW model can be formulated entirely in terms

of G-valued field g and h

L = LgWZW [g,A+, A−]− µ2Tr(g−1tgt)

(does not depen on χ).

That is what happens in the bosonic sector.

Our aim now is to identify Z4 grading on psu(2, 2|4) such that in
the bosonic part f̂0 = su(1, 1)⊕ su(2) and f̂2 its orthogonal comple-
ment in su(1, 1)⊕ su(2)⊕ su(1, 1)⊕ su(2).



Z4 grading

The automorphism inducing Z4 grading:
a α 0 0
β b 0 0
0 0 c γ
0 0 δ d


Ω

= −


ct −δt 0 0
γt dt 0 0
0 0 at −βt
0 0 αt bt

 (1)

MΩ = ikM for M ∈ f̂Ck so that

f̂C = f̂C0 ⊕ f̂C1 ⊕ f̂C2 ⊕ f̂C3

The decomposition induces that of the real form f̂ of f̂C (elements
satisfying a∗ = −a). Note that in the bosonic part χ(a) = −at.

Once Z4 grading is identified the general reduction procedure is
aplicable. In the AdS3 × S3 case we can explicitly eliminate A±
fields and arrive at the Lagrangian for physical degrees of freedom
only.



Reduced Lagrangian

Imposing the gauge on g and parametrizing g in terms of the Euler
angles

g =
(
gA 0
0 gS

)
,

gA =
(
eiϑ coshφ sinhφ

sinhφ e−iϑ coshφ

)
, gS =

(
eiθ cosϕ sinϕ
− sinϕ e−iθ cosϕ

)
One can solve for A± = A±[φ, ϕ, θ, ϑ, fermions].

The reduced Lagrangian has the following structure:

L = LB + LF



In more details:

LB = ∂+ϕ∂−ϕ+cot2 ϕ ∂+θ∂−θ+∂+φ∂−φ+coth2 φ ∂+ϑ∂−ϑ

+
µ2

2
(cos 2ϕ− cosh 2φ) .

i.e. the sum of CSG Lagrangian and its hyperpolic counterpart.

LF = α∂−α+β∂−β+γ∂−γ+δ∂−δ+λ∂+λ+ν∂+ν+ρ∂+ρ+σ∂+σ

+ cot2(φ)(∂−θ(αβ − γδ)− ∂+θ(λν − ρσ))

− coth2(ϕ)(∂−ϑ(αβ − γδ)− ∂+ϑ(λν − ρσ))

2(αβ − γδ)(λν − ρσ)(
1

sin2 φ
+

1
sinh2 φ

)

− 2µ
(

sinhφ sinϕ(λβ − να+ ρδ − σγ) + coshφ cosϕ

×
[
cos (ϑ+ θ)(σα−ρβ+λδ−νγ)+sin (ϑ+ θ)(ρα+σβ−λγ−νδ)

])



– explicitly 2d Lorentz invariant, contains 4 real bosons and 4 real
fermions.
– in the limit θ = ϑ = 0 and half of the fermons set to zero repro-
duces the N = 2 susy sine-Gordon model.
– LB admits susy extension in both AdS3 and S3 sectors but this is
different becuase the two sectors do not see each other in contrast to
our case.



Open questions

• SUSY in AdS3 × S3 case. If yes the same for AdS5 × S5 .
There are indications but it seems nontrivial.

• Clarifying the relationship between the original and the re-
duced system. E.g. symmetries, vacua, values of conserved
charges etc.

• Generalising the Pohlmeyer reduction to other models includ-
ing flat space GS superstring, gWZW models, etc. Note that
already AdS5×S5 superstring contains WZ term for fermions

• Integrate out theA± fields in theAdS5×S5 case. This involves
identification of a right vacua at the Lagrangian level and pos-
sibly asymmetrically gauged form of the gWZW model with
fermions.

:


