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Motivations

IIB superstrings on AdSs x S°; difficulties at the quantum level

The analog of the flat space
light-cone gauge breaks the 2d Lorentz invariance. This makes
it hard to apply the standard methods of 2d intergable fields
theories.

Another approach: FR reduction (known
in the case of S°-sigma model) also breaks 2d Lorentz. Not
clear how to generalize to other cosets.

Remarkably, for rather general coset models there is an alter-
native — Pohlmeyer reduction. Although intermediate steps are
not Lorentz invariant the resulting action is.

Generalization to AdS5 x.S° and AdS, x S?



e Known cases: superstrings on AdS,, x S™ for n = 2,3,5.
n = 5 too complicated, n = 2 too simple but promissing (gives
N = 2 susy sine-Gordon model)

e Can be intersting to study AdSs x S2 as a kind of full-featured
but still explicitly manageable example. However, the structure
is slightly different and the procedure should be modified.



Pohlmeyer reduction

S?-sigma model:
1
S=— [ d®c 0, XMO_X™ —AX"X™ ~-1), m=1,2,3
i ideY

Equations of motion:
0, 0_ X"+ AX" =0, A=0,X"0_ X", X"X"=1
Stress tensor:
Tiy =0L X"M0L X™, T,_ =0
Stress tensor conservation
0, T__ =0, 0_T,y =0

implies: T, = f(oy), T__ = h(o_) so that using the appropriate
conformal transformation one can achieve:

0L X™MO, X™ = p? O_XMO_X™ =p?, = const .



We then have 3 unit vectors in 3-dimensional Euclidean space:
xm. X =p"to X, X" =y to_X™,

In fact X™ is orthogonal (X™9d+ X™ = 0) to both X" and X™
and therefore is not independent. The only SO(3) invariant quantity

1s then
p?cos2p =0, Xm0 X",

The equations of motion imply 0,0_¢ + “72 sin 2¢p = 0 following

from
2

L= 01 p0_p + % COS 2¢

— sine-Gordon model(SG).



Analogous consideration for S® = SO(4)/SO(3) leads to

_ 2
Losa = 0490_@ + tan® p 0,00_6 + % cos 2

— Complex sine-Gordon model (CSG).
Here ¢, 0 are the following SO(4)-invariants:

12 cos2p =0, XmMo_X™

1
p’sin® © 040 = $§€mnlem3+Xn3—Xk5:2tXl

Instead of sigma model on S one can consider bosonic strings on
S™ x R! and use the gauge ¢t = p7 along with the conformal gauge.
The conditions

8i X maj: XM = ,LL2

are then the Virasoro constraints.



Comments:

Virasoro constraints are solved by a special choice of variables
related nonlocally to the original coordinates

Although the reduction 1s not explicitly Lorentz invariant the
resulting Lagrangian turns out to be 2d Lorentz invariant

The reduced theory is formulated in terms of manifestly SO(n)
invariant variables “blind” to the original global symmetry

The reduced theory 1s equivalent to the original theory as an
integrable system: the respective Lax connections are gauge-
equivalent

PR may be thought of as a formulation in terms of physical
d.o.f. — coset space analog of flat-space l.c. gauge (in the
known l.c. gauges for AdS5 x S° the 2d Lorentz is broken)

In general the reduced theory 1s not quantum-equivalent to the
original one (e.g., conformal symmetry was assumed in the re-
duction procedure)



Pohlmeyer reduction of the F'/G-coset models

For SO(3)/S0(2) or SO(4)/S0(3) it is not needed. But we
need higher dimensions and better understanding.

F/G-coset sigma model:

Let |, g — respective Lie algebras. The symmetric space condition
(Z2-grading)

f=pdyg, g.9]Cag, g.p] Cp, p,p] C g

along with (g, p) = 0 (in our setting (a, b) = Tr(ab)).
The Lagrangian:

L=-Tr(P.P_), Pr=(f"0+f)p,
where
J=flf=A+P, A=Jycg, P=Jep.

(G gauge transformation f — fg; global F-symmetry: f — fyf for
any constant fy € F'; conformal invariance.



First step: equations of motion in terms of currents

The fundamental variables are now J = A + P. The full set of
equations of motion involves now:

D,P =0, D_P =0 — Equations of motion
— %Tr(P+P+) = 12, —% Tr(P_P_) = i? — Virasoro const.
D P.—D.P +[P.,P]+[A_,A]=0 — Maurer-Cartan

Heree.g. Dy P_. =0, P_ +[A., P_|.
Main idea: — first solve EOMs and Virasoro using special choice of
(G gauge condition and special parametrization of currents

Then find reduced action giving eqgs. resulting from MC
Special gauge where the first Virasoro constraint is solved by
P, =uT, p=-consteclR
T =constep=FfOg, Tr(TT) = —1

“polar decomposition” theorem.



Lie algebra decomposition

The choice of an element 7" determines the following decomposi-
tion (a = {T'})

f=pdyg, p=adn, g=mdbh, la,a] =0,
such that
m,m/Ch, [mbphCm, [maCn, [a,n]Cm.

1.e. b 1s a centraliser of 7" in g.
Well-known “triple” of Lie groups for F'/G coset sigma model:

HcGCF



New parametrization

Using the decomposition above the first EOM D_FP, = 0 1is
solvedby A_ = A_ €

The second Virasoro constraint is solved by
P_=pg~'Ty

with g being a new (G-valued field.
Finally, the EOM D, P_ = 0 1s solved by

Ay =g '049+9 'Arg, b-valued A,

To summarise:

we have solved all EOMs and Virasoro constraints. The new
parametrisation is in terms of

(G-valued field g, h-valued fields A, A_.

The only remaining equation is the Maurer-Cartan equation.



Relation to gauged WZW model

Maurer-Cartan equation in terms of new parametrization:

O (g '049+9 'Ayg) — 04 A
+[A_ 97 049+ 9 ' Argl + 1Pl Tg, T] =0

Recall: P, =uT, P =ug Ty,
AL =g ' 0,9g+9 'Ayg, A=A
MC eq. has “on-shell” H x H gauge symmetry:
g —h~'gh,
A, - h *ALh+h 0L, A_—h'A_h+h'O_h,

can choose a gauge:

Ay =(97'019+9 "Avg)y, A_=(g0_g ' +9A_g )



G /H gWZW action with potential:

L= - %Tr(g_lfugg_l(‘?_g) + WZ term
— Tr(A40_g9 ' —A_g '0,9—g TALgA_+ ALA)
— p’Tr(Tg™'Ty)

Remains left-right H gauge symmetry: A = h.

— Action and gauge symmetries of the Pohlmeyer-reduced theory
for F'/G coset sigma model . Also for strings on R; x F'/G or F'/G X
Sy

integrable potential: relation at the level of Lax pairs

special case of non-abelian Toda theory:

“symmetric space Sine-Gordon model”



Structure of the action

The action of the reduced theory can be written as:
L=Lywzw + Ladd , Loga = —Tr(Py P_)
where
Py =Py (9)=pT, P_=pg 'Tyg

Note:

Lqqq — original Lagrangian of the F'/G coset model
written in terms of new parametrization.

Lgyw zw — the Lagrangian of the gauged WZW model
encoding the MC equation



Elimination of A,

A —auxiliary fields. What to do about A, , A_: integrate out or
gauge-fix?

Gauge A+ = 0: reduced EOM’s in the “on-shell” gauge:
On-shell0_ Ay —0;A_+[A_,A;]=0socanset AL =0
d_(97'049) — p°[T,9g~ Tg] =0,
(97'0+9)y =0, (0-997 ")y =0.
F/G=50(n+1)/SO(n)=5": G/H=50(n)/SO(n—1)
Parametrising g as

ki ko ... Eky n
1=1



One gets (in general non-Lagrangian) EOM for k,,

5 9, ks
V1= kmkm

:—,u2kg7 622,...,77,.

Linearising around the vacuum g = 1 (i.e. k1 =1, k, = 0)
0.0_ky + ,lLng + O(k?) =0

Massive spectrum, H = SO(n — 1) global symmetry



Integrating out A : gauge condition on g field
F/G =50(n+1)/S0O(n) = S™: parametrization of g
in terms of Euler angles

g = eTn—len—l...6T20262T906T202. Ty -10n—-1

..€

and integrating out H = SO(n — 1) gauge field Ay
leads to reduced theory that generalizes SG and CSG

~ 2
L = 0,00_+ Gpylp, 0)0,6°0_67 + % cos 2

no B,,, coupling
similar for F//G = SO(2,n —1)/S0O(1,n — 1) = AdS,, case:
G/H=S50(1,n—1)/SO(n—1)

For n = 2, 3: SG and CSG models
and their AdS counterparts.
For n = 4,5 explicit G, were given in



Bosonic strings on AdS,, x S

The Lagrangian and the Virasoro constraints:
LA = Tr(PAPY-Te(PYP?),  Tr(PPPY)-Tr(P{PL) =0
Using the conformal transformation one can assume
1 1
—ng(PfPf) = —gTr(PfPﬁ) = 1’

The rest of the Pohlmeyer reduction goes in each sector indepen-
dently giving the direct product of the reduced systems for S™ and
AdS,, respectively.

Except for 1 the AdS,, and S™ sectors do not see each other.

Example: in the case of AdS> x S? one gets:

2
LAS2XS" — 9. wO_p + 04 pO0_d + %(COS 2 — cosh 2¢)

Note that for some n (e.g. n = 2, 3, 5) one can also use the represen-

tation by unitary matrices instead of orthogonal ones. For instance
SG corresponds to SU (2) /U (1)



AdSs x S” superstring sigma-model

_ SU(2,2) _ SU(4)
AdSs x 8° = S5 X

supercoset GS sigma model (Metsaev, Tseytlin, 985)

| /)

_ PSU(2,2/4)
G Sp(2,2) x Sp(4)

basic superalgebra | = psu(2,2|4)
bosonic part f = su(2,2) ® su(4) = so(2,4) @ so(6)
admits Z4-grading: (Berkovits, Bershadsky, et al 89)

?:% @% @% @?3 ; [?m?j] C/f\’i—l—j mod 4
o =g =5p(2,2) @ sp(4)
current (J = f~10,f, f € F) decomposes as
Ja :f_laaf:Aa+Qla+Pa+Q2a

AE?O: Q1€?1, PE%» Qze%-



GS Lagrangian:

1 a a
Las = §STr(\/—gg "P,P, +¢ leaQ2b)7

Very simple structure — but not standard coset model:
fermionic currents in WZ term only

leads to k-symmetry:

Opda = Og€ + [Ja, €, (5R\/—ggab)ab = ...
€ = {P(-I-)cw Zk%(—)} + {P(—)CL7 Zkg(—i—)}
Conformal gauge:
1
Lgs = STr|Py P + 2 (Q14Q2— — Q1-Q24)]

STr(PLP.) =0, STr(P_P_) =0



Pohlmeyer reduction of the AdSs x S°
superstring

In terms of current J = A+ P + Q1 + Q2

EOM : Oy P+ AL, Pl +[Qsr,Q2-]=0,
O_Py +[A_, P+ [Q1-,Q14] =0,
[P, Q-] =0, [P-, Q24| =0.
Virasoro : STr(P.Py) =0, STr(P_P_)=0
MCI 6_J_|_—8_|_J_—|—[J_,J_|_]:O.

PR procedure: solve first EOM and Virasoro
r-gauge condition: @Q1_ =0, Q21 =0
solves the last (fermionic) pair of EOM



As 1n the bosonic case the remaining EOM:
8+P_‘|‘[¢4_|_,P_]:O, 8_P+—|—[A_,P+]:O

are solved by fixing the “reduction gauge” and using the conformal
symmetry. Namely one gets:

P.=uT, T = %diag(l, 1,1, —1[1,1,—1, 1)

P.=pg Ty, Ay=g '049+9 'Arg, A_=A_

T defines h by [h, T = O:
h = su(2) & su(2) & su(2) ® su(2)
New parametrisation:

G = Sp(2,2) x Sp(4) — valued field g, b§ — valued field A+



In the new parametrization MC eqs. become:

0 (971019 +9 ' Ayg) =0, A +[A_,g7 0y g+9g " Ayg]
= —1°[g7 ' Tg, T) + [Q14, Q2-],
0-Q1y + A, Quy| =p|T,Q2],
04Qa + g 049+ 9 Ay, Qo] =plg™ ' Ty, Q4]
AdSs and S° sectors now coupled by fermions
remains residual k-symmetry to be fixed

use 7' to generalise decomposition of bosonic part
f=1T @®n®h @ mto superalgebra psu(2,2|4)

f=flett, [0 =0
define
Uy = Q1+, Uy =gQag "

Ui, U5 can be set =0 by residual x-symmetry



The remaining fermionic components

1 1
v, = —ul v, = —ul

R \//j L \/ﬁ
transform under H x Has ¥, — h™ 10 _h, ¥, — h= 10 _h.

Equations of motion (MC equation) of reduced theory are thus:

0 (97049 +9 " Arg) =04 A +[A_ g7 0 g+ 9 " Arg]
= —p’lgT'Tg,T) = plg™' ¥, g, ¥,],

[T7 D—\DR] — _M(g_l\Ing)H ) [Tv D—F\PL] — _M(gqug_l)” :
Pohlmeyer reduced system at the level of EOMs



Lagrangian of PR theory for AdS5 x S° superstring

(MG, Tseytlin 07; similar action: Mikhailov, Schafer-Nameki 07)

fermionic generalization of “gWZW+ potential” theory for

G _ Sp(2,2) Sp(4)
H = SU@)xSU(2) ~ SU2)xSU(2)

X

L = Lgwawl(g, Ay, A)+ p*STr(g~ TyT)
£ STe(U,[T,D40,] + 0, [T,D U,
+  pSTr(g~' 0, g7,

Direct sum of PR theories for AdSs and S° “glued together” by
components of fermions

L = 535(9’144‘714—)—i_zAdSE)(g?A—l—aA—)
+ Y, Dy, +9v. D1, + p (interaction terms)

standard kin. terms for bosons and fermions (cf. GS action)



Comments:

e ¢WZW model coupled to the fermions interacting minimally
and through the “Yukawa term”

e 8 real bosonic and 16 real fermionic independent variables
e 2d Lorentz invariant with W ., W as 2d Majorana spinors

e 2d supersymmetry? yes, at the linearised level, and yes in
AdS, x S? case: n = 2 super sine-Gordon

e quadratic in fermions (like susy version of gWZW); integrating
out A4 gives quartic fermionic terms (reflecting curvature)

e linearisation of EOM in the gauge A+ = 0 around ¢ = 1
describes 8+8 massive bosonic and fermionic d.o.f. with mass
pv: same as in BMN limit. H = [SU(2)]* global symmetry



The structure of the potential:
Like in the bosonic case:

1
L =Lwzw+Lada, Ladd= STT(P+P—+§ (Q1+Q2——Q1-Q2+))

where Ly 7w — Lagrangian of gWZW with fermions and

P—|- :MT, P_ :,Ug_ng, Ql—i— :\//j\IjRa Q2— :\/ﬁg_l\DLg
and Q)1 = Q2 = 0 due to the k-gauge.

Path integral derivation via change from fields to currents?

Lorentz invariance:

Variables W . and W, originate from Lorentz vectors
(fermionic components of currents).

Consistently assigning the Lorentz transformation properties.
If ¥ ., ¥, 2d Majorana spinors then L 1s Lorentz invariant.
(Contrary to the bosonic case where no change is needed)



Example: AdS, x S*

Explicit parametrisation:

: 0 0 O
0 — 0 O
F=310 0o i o
0 0 0 —
0O o 0 O cosh¢ sinh ¢ 0 0
_ o 0 0 O _ sinh¢ cosho 0 0
I=PlL 0 0 0 dp | T 0 0  cosp ising
0 0 2o O 0 0 1sinp  cos
Fermions:
0 0 0 oy 0 O 0 »p
B 0O 0 —p8 0 B 0 0 —w O
Vi = 0 26 O 0 v, = O v 0 O
v 0 0 0 1p 0 0 O



The Lagrangian (N = 2 supersymmetric sine-Gordon):

2
Liot = 0rp0_0 4+ 0L 00_¢ + % (cos 2¢p — cosh 2¢)

+ BO_B +y0_v 4+ vOsv + pO4p
— 2u [cosh ¢ cosp (Bv + vp) + sinh ¢ siny (Bp — yv)] .

In more conventional (/N = 2 susy) terms can be rewritten as:

Liot = 0:80_8" — [W (@) + 47 04), + 9501,
W (@), 9, + W (@) 7]

where
12
W(®) = pcos®, W' (®)]* = ?(cosh 2¢ — cos 2¢) .

and
¢L:V+ip7 ¢R2_6+Z’77



Superstrings on AdS; x S?

Supercoset:

PSU(1,1]2) x PSU(1,1|2)
SU(1,1) x SU(2)

Note: AdS3 x S® = SU(1,1) x SU(2)

To apply the general scheme one needs to identify the Z, grading
on

f=psu(1,12) & psu(1,12)
such that fo = su(1,1) @ su(2) C psu(l,1]2) ® psu(l,1]2)

Z4 grading was discussed in the literature but we need its matrix
form along with the compatible decomposition | = ﬂ ® .



Simple example

(G - Principal Chiral Model (PCM). It can be identified with
G xG
G

coset sigma model with G being diagonal subgroup.

More generally: G — a subgroup formed by elements of the form
(g9,X(9)); X — automorphism compatible with the trace.

The respective orthogonal decomposition:

F=80p, g=1{(ax()}, p=1la,—x(a))}.

The symmetric space conditions [g,g] C g, [g,p] C p, [p,p] C g
are satisfied.

Under some algebraic conditions (satisfied in the AdS3 or S°
case) one can apply Pohlmeyer reduction.



Pohlmeyer reduction of PCM

Using gauge symmetry and new parametrization:

Pp=uT, P_=pg'Tg, T=(t-x(t), 7=/ (9,x(9))

with ¢ in Cartan subalgebra h C g.

The resulting gWZW model can be formulated entirely in terms
of G-valued field g and b

L = LgWZW[g7A-|-7A—] o ,u2Tr(g_1tgt)

(does not depen on ).

That is what happens in the bosonic sector.

Our aim now is to identify Z4 grading on psu(2 2|4) such that in

the bosonic part fo = su(1,1) @ su(2) and f, its orthogonal comple-
ment in su(1,1) ® su(2) ® su(1,1) & su(2).



/4 grading

The automorphism inducing 74 grading:

Y ¢

a a 0 0 ¢t =5 0 0

B boo| [+ da o o 0
0 0 c v - 0o 0 a -—-pB

0 0 § d 0 0 o b

M = %M for M € fC so that
F=fofeikof

The decomposition induces that of the real form ? of ?C (elements

satisfying a* = —a). Note that in the bosonic part x(a) = —a’.

Once Z, grading is identified the general reduction procedure is
aplicable. In the AdS3; x S° case we can explicitly eliminate A
fields and arrive at the Lagrangian for physical degrees of freedom
only.



Reduced Lagrangian

Imposing the gauge on g and parametrizing g in terms of the Euler

angles
(94 O
g T ( O gS ) )

([ e cosh¢ sinh ¢ ~( e?cosy sin ¢
9A = sinhg e @cosheg ) 7957\ —sing e ?cosep

One can solve for AL = AL[¢, v, 0,9, fermions|.
The reduced Lagrangian has the following structure:

L =L+ Lp



In more details:

L = 0,00_p+cot? 0 0,00_60+ 0, ¢0_¢ + coth® ¢ 0, 090_1
2
+ %(COS 2¢p — cosh 2¢) .

1.e. the sum of CSG Lagrangian and its hyperpolic counterpart.

Lr = ad_a+G0_[B+v0_~y4+00_0+ 0L A+v0 v+p0 p+00s0
+ cot?(¢)(0-0(aB — 7d) — 040\ — po))
— coth?() (0 D(af — 78) — 49w — por)
1 1
2 — 7)) (Av —
(aﬁ Y )( 4 pa)(SiHQ & -+ sinh2 ¢)
— 2,u(sinh<bsin ©(AB — va + pd — o) + cosh ¢ cos @

x | cos (¥ + 0)(ca—pB+Ad—vy)+sin (9 + 9)(pa+05—)\W_V5)])



— explicitly 2d Lorentz invariant, contains 4 real bosons and 4 real
fermions.

— in the limit # = ¥ = 0 and half of the fermons set to zero repro-
duces the NV = 2 susy sine-Gordon model.

— Lp admits susy extension in both AdS3 and S? sectors but this is
different becuase the two sectors do not see each other in contrast to
our case.



Open questions

SUSY in AdS; x S° case. If yes the same for AdS5 x S° .
There are indications but it seems nontrivial.

Clarifying the relationship between the original and the re-
duced system. E.g. symmetries, vacua, values of conserved
charges etc.

Generalising the Pohlmeyer reduction to other models includ-
ing flat space GS superstring, gWZW models, etc. Note that
already AdS5 x S° superstring contains WZ term for fermions

Integrate out the A fields in the AdS5x.S® case. This involves
identification of a right vacua at the Lagrangian level and pos-
sibly asymmetrically gauged form of the gWZW model with
fermions.



