PROPERTIES OF HEAVY BARYONS IN THE RELATIVISTIC QUARK MODEL

Rudolf Faustov

(in collaboration with Dietmar Ebert and Vladimir Galkin)

based on: Phys. Rev. D **72**, 034026 (2005) [arXiv:hep-ph/0504112] Phys. Rev. D **73**, 094002 (2006) [arXiv:hep-ph/0604017] Phys. Lett. B **659**, 612 (2008) [arXiv:0705.2957 [hep-ph]] "My conclusion is that if you want to know the mass of a particle and if you have little time (in years!) and little money you should forget all your prejudices and use potential models. This is, in fact, even true to a large extent for systems containing light quarks, which is still more mysterious."

André Martin (CERN) CERN-TH/96-318

Heavy baryons (qqQ)

 $J = 1/2 \quad \Lambda_c \quad \Lambda_b \quad \Xi_c \quad \Xi_b \quad \Sigma_c \quad \Sigma_b \quad \Xi_c' \quad \Xi_b' \quad \Omega_c \quad \Omega_b$ $J = 3/2 \quad \Sigma_c^* \quad \Sigma_b^* \quad \Xi_c^* \quad \Xi_b^* \quad \Omega_c^* \quad \Omega_b^*$ $[ud]c \quad [ud]b \quad [us]c \quad [us]b \quad \{ud\}c \quad \{ud\}b \quad \{us\}c \quad \{us\}b \quad \{ss\}c \quad \{ss\}b$ $[ds]c \quad [ds]b \quad \{dd\}c \quad \{dd\}b \quad \{ds\}c \quad \{ds\}b$ $\{uu\}c \quad \{uu\}b$ isospin 0 0 1/2 1/2 1 1 1 1/2 1/2 0 0

INTRODUCTION

• Mass spectrum of heavy baryons $B_Q \; (qqQ)$, (q=u,d,s)

Main assumption: heavy-quark-light-diquark picture of heavy baryons Three-body calculation \longrightarrow two-step two-body calculation

Diquark is a composite system with S = 0, 1:

• light diquark is not point-like object: Its interaction with gluons is smeared by the form factor expressed through the overlap integral of diquark wave functions

Difference in dynamics of heavy and light quarks:

 \bullet slow relative motion of heavy quark Q

 \bullet fast motion of light diquarks d ($v/c \sim 0.6-0.7) \rightarrow$ light diquark should be treated fully relativistically

Pauli principle for ground state diquarks:

- (qq') diquark can have S = 0, 1 (scalar [q, q'], axial vector $\{q, q'\}$)
- (qq) diquarks can have only S = 1 (axial vector $\{q,q\}$)

Two types of heavy baryons:

- Λ_Q type light scalar diquark: Λ_b , Λ_c , Ξ_b , Ξ_c spin 1/2
- $\Omega_Q(\Sigma_Q)$ type light axial vector diquark: Ω_b , Ω_c , Ξ'_b , Ξ'_c , Σ_b , Σ_c spin 1/2; Ω^*_b , Ω^*_c , Ξ^*_b , Ξ^*_c , Σ^*_b , Σ^*_c – spin 3/2

• Heavy-to-heavy semileptonic decays of baryons: $B_Q \rightarrow B_{Q'} e \nu$ (Q = b, c)Additional source for the determination of V_{cb} .

Active heavy quark and spectator light diquark.

HQS $(m_Q \rightarrow \infty)$:

heavy quark spin and mass decouple \rightarrow heavy baryon properties are determined by light diquarks \rightarrow

• masses of ground state baryons with spin 1/2 and 3/2 containing the axial vector diquark are degenerate

- for $\Lambda_b \to \Lambda_c$ one universal form factor $\zeta(w)$ (Isgur-Wise function)
- for $\Omega_b \to \Omega_c$ two universal form factors $\zeta_1(w)$ and $\zeta_2(w)$
- ullet isospin violating decay amplitudes, e.g. $\Lambda_b \to \Sigma_c$, vanish

$1/m_Q$ order:

- for $\Lambda_Q \to \Lambda_{Q'}$ one additional mass parameter $\bar{\Lambda}$ and one additional function $\chi(w)$
- for $\Omega_Q \to \Omega_{Q'}$ one additional mass parameter $\bar{\Lambda}$ and five additional functions

RELATIVISTIC QUARK MODEL

Quasipotential equation of Schrödinger type:

$$\left(rac{b^2(M)}{2\mu_R} - rac{\mathbf{p}^2}{2\mu_R}
ight)\Psi_M(\mathbf{p}) = \int rac{d^3q}{(2\pi)^3} V(\mathbf{p},\mathbf{q};M)\Psi_M(\mathbf{q})$$

p - relative momentum of quarks (diquarks) M - bound state mass ($M = E_1 + E_2$) μ_R - relativistic reduced mass:

$$\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

b(M) - on-mass-shell relative momentum in cms:

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

 $E_{1,2}$ - center of mass energies:

$$E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M}, \quad E_2 = \frac{M^2 - m_1^2 + m_2^2}{2M}$$

- Parameters of the model fixed from meson sector
- $q\bar{q}$ quasipotential (meson sector)

(Constructed with the help of off-mass-shell scattering amplitude projected onto positive-energy states)

$$V(\mathbf{p}, \mathbf{q}; M) = \bar{u}_1(p)\bar{u}_2(-p) \left\{ \frac{4}{3} \alpha_S D_{\mu\nu}(\mathbf{k}) \gamma_1^{\mu} \gamma_2^{\nu} + V_{\text{conf}}^V(\mathbf{k}) \Gamma_1^{\mu} \Gamma_{2;\mu} + V_{\text{conf}}^S(\mathbf{k}) \right\} u_1(q) u_2(-q)$$

 $\mathbf{k} = \mathbf{p} - \mathbf{q}$ $D_{\mu\nu}(\mathbf{k})$ - (perturbative) gluon propagator $\Gamma_{\mu}(\mathbf{k})$ - effective long-range vertex with Pauli term:

$$\Gamma_{\mu}(\mathbf{k}) = \gamma_{\mu} + \frac{i\kappa}{2m} \sigma_{\mu\nu} k^{\nu},$$

 κ - anomalous chromomagnetic moment of quark,

$$u^{\lambda}(p) = \sqrt{\frac{\epsilon(p) + m}{2\epsilon(p)}} \left(\begin{array}{c} 1\\ \frac{\boldsymbol{\sigma}\mathbf{p}}{\epsilon(p) + m} \end{array}\right) \chi^{\lambda},$$

with $\epsilon(p) = \sqrt{\mathbf{p}^2 + m^2}$.

• Lorentz structure of $V_{
m conf} = V_{
m conf}^V + V_{
m conf}^S$

In nonrelativistic limit

$$\begin{cases} V_{\text{conf}}^V &= (1-\varepsilon)(Ar+B) \\ V_{\text{conf}}^S &= \varepsilon(Ar+B) \end{cases} \\ \end{cases} \quad \text{Sum}: \quad (Ar+B)$$

 ε - mixing parameter

Parameters A, B, κ , ε and quark masses fixed from analysis of meson masses and radiative decays:

 $\varepsilon = -1$ from heavy quarkonium radiative decays $(J/\psi \rightarrow \eta_c + \gamma)$ and HQET $\kappa = -1$ from fine splitting of heavy quarkonium ${}^{3}P_{J}$ states and HQET $(1 + \kappa) = 0 \implies$ vanishing long-range chromomagnetic interaction !

Freezing of α_s for light quarks (Simonov, Badalyan)

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \ln \frac{\mu^2 + M_0^2}{\Lambda^2}}, \quad \beta_0 = 11 - \frac{2}{3}n_f, \quad \mu = \frac{2m_1m_2}{m_1 + m_2},$$

$$M_0 = 2.24\sqrt{A} = 0.95 \; {\rm GeV}$$

Quasipotential parameters:

 $A = 0.18 \text{ GeV}^2$, B = -0.30 GeV, $\Lambda = 0.413 \text{ GeV} (\text{from } M_{\rho})$

Quark masses:

 $m_b = 4.88 \text{ GeV}$ $m_s = 0.50 \text{ GeV}$ $m_c = 1.55 \text{ GeV}$ $m_{u,d} = 0.33 \text{ GeV}$

• Heavy baryons in quark-diquark picture

$$(qq)$$
-interaction: $V_{qq} = \frac{1}{2}V_{q\bar{q}}$

$$V(\mathbf{p},\mathbf{q};M) = \bar{u}_1(p)\bar{u}_2(-p)\mathcal{V}(\mathbf{p},\mathbf{q};M)u_1(q)u_2(-q),$$

where

$$\mathcal{V}(\mathbf{p},\mathbf{q};M) = \frac{2}{3}\alpha_S D_{\mu\nu}(\mathbf{k})\gamma_1^{\mu}\gamma_2^{\nu} + \frac{1}{2}V_{\text{conf}}^V(\mathbf{k})\Gamma_1^{\mu}\Gamma_{2;\mu} + \frac{1}{2}V_{\text{conf}}^S(\mathbf{k})$$

(dQ)-interaction:

$$d = (qq')$$

$$V(\mathbf{p},\mathbf{q};M) = \frac{\langle d(P)|J_{\mu}|d(Q)\rangle}{2\sqrt{E_d(p)E_d(q)}} \bar{u}_Q(p) \frac{4}{3} \alpha_S D_{\mu\nu}(\mathbf{k}) \gamma^{\nu} u_Q(q) + \psi_d^*(P) \bar{u}_Q(p) J_{d;\mu} \Gamma_Q^{\mu} V_{\text{conf}}^V(\mathbf{k}) u_Q(q) \psi_d(Q) + \psi_d^*(P) \bar{u}_Q(p) V_{\text{conf}}^S(\mathbf{k}) u_Q(q) \psi_d(Q)$$

 $J_{d,\mu}$ – effective long-range vector vertex of diquark:

$$J_{d;\mu} = \begin{cases} \frac{(P+Q)_{\mu}}{2\sqrt{E_d(p)E_d(q)}} & \text{for} \\ \frac{(P+Q)_{\mu}}{2\sqrt{E_d(p)E_d(q)}} + \frac{i\mu_d}{2M_d} \Sigma^{\nu}_{\mu} k_{\nu} \end{cases}$$

for scalar diquark

for axial vector diquark ($\mu_{\rm d}=0$)

 μ_d - total chromomagnetic moment of axial vector diquark diquark spin matrix: $(\Sigma_{\rho\sigma})^{\nu}_{\mu} = -i(g_{\mu\rho}\delta^{\nu}_{\sigma} - g_{\mu\sigma}\delta^{\nu}_{\rho})$ \mathbf{S}_d - axial vector diquark spin: $(S_{d;k})_{il} = -i\varepsilon_{kil}$

 $\psi_d(P)$ – diquark wave function:

$$\psi_d(p) = \begin{cases} 1 & \text{for scalar diquark} \\ \varepsilon_d(p) & \text{for axial vector diquark} \end{cases}$$

 $\varepsilon_d(p)$ – polarization vector of axial vector diquark

 $\langle d(P)|J_{\mu}|d(Q)\rangle$ – vertex of diquark-gluon interaction:

$$\langle d(P)|J_{\mu}(0)|d(Q)\rangle = \int \frac{d^3p \, d^3q}{(2\pi)^6} \bar{\Psi}_P^d(\mathbf{p})\Gamma_{\mu}(\mathbf{p},\mathbf{q})\Psi_Q^d(\mathbf{q}) \Rightarrow F(k^2)$$

 Γ_{μ} – two-particle vertex function of the diquark-gluon interaction:

Figure 1: The vertex function Γ of the diquark-gluon interaction in the impulse approximation. The gluon interaction only with one quark is shown.

LIGHT DIQUARKS

Table 1: Masses of light ground state diquarks (in MeV). S and A denotes scalar and axial vector diquarks antisymmetric [q, q'] and symmetric $\{q, q'\}$ in flavour, respectively.

Quark	Diquark	Mass								
content	type	our	Ebert et al.	Burden et al.	Maris	Hess et al.				
		RQM	NJL	BSE	BSE	Lattice				
[u,d]	S	710	705	737	820	694(22)				
$\{u,d\}$	А	909	875	949	1020	806(50)				
[u,s]	S	948	895	882	1100					
$\{u,s\}$	А	1069	1050	1050	1300					
$\{s,s\}$	А	1203	1215	1130	1440					

Figure 2: The form factors F(r) for the scalar [u, d] (solid line) and axial vector $\{u, d\}$ (dashed line) diquarks.

MASSES OF HEAVY BARYONS

* p/m_Q expansion for heavy quark * relativistic treatment of light diquark d = (qq)

• leading order in p/m_Q

for scalar diquark

$$V^{(0)}(r) = \hat{V}_{\mathrm{Coul}}(r) + V_{\mathrm{conf}}(r),$$

for axial vector diquark

$$V^{(0)}(r) = \hat{V}_{\text{Coul}}(r) + V_{\text{conf}}(r) + \frac{1}{E_d(E_d + M_d)} \frac{1}{r} \left[\frac{M_d}{E_d} \hat{V}_{\text{Coul}}'(r) - V_{\text{conf}}'(r) + \mu_d \frac{E_d + M_d}{2M_d} V_{\text{conf}}'^V(r) \right] \mathbf{LS}_d,$$

$$\hat{V}_{\text{Coul}}(r) = -\frac{4}{3}\alpha_s \frac{F(r)}{r}, \qquad V_{\text{conf}}(r) = Ar + B,$$

where $\hat{V}_{\text{Coul}}(r)$ is the smeared Coulomb potential (which accounts for diquark structure).

• $\delta V(r)$ corrections up to second order in p/m_Q (spin-independent + \mathbf{LS}_Q , $\mathbf{S}_d\mathbf{S}_Q$, T terms)

Mass formula

$$\frac{b^2(M)}{2\mu_R} = \frac{\langle \mathbf{p}^2 \rangle}{2\mu_R} + \langle V^{(0)}(r) \rangle + \langle \delta V(r) \rangle.$$

Baryon	$I(J^P)$		Theory							
		our	Capstick	Roncaglia	Savage	Jenkins	$Mathur^*$	PDG		
		(2005)	lsgur	et al.			et al.			
Λ_c	$0(\frac{1}{2}^{+})$	2297	2265	2285			2290	2286.46(14)		
Σ_c	$1(\frac{1}{2}^{+})$	2439	2440	2453			2452	2453.76(18)		
Σ_c^*	$1(\frac{3}{2}^{+})$	2518	2495	2520	2518		2538	2518.0(5)		
Ξ_c	$\frac{1}{2}(\frac{1}{2}^+)$	2481		2468			2473	2471.0(4)		
Ξ_c'	$\frac{1}{2}(\frac{1}{2}^+)$	2578		2580	2579	2580.8(2.1)	2599	2578.0(2.9)		
Ξ_c^*	$\frac{1}{2}(\frac{3}{2}^+)$	2654		2650			2680	2646.1(1.2)		
Ω_c	$0(\frac{1}{2}^{+})$	2698		2710			2678	2697.5(2.6)		
Ω_c^*	$0(\frac{3}{2}^{+})$	2768		2770	2768	2760.5(4.9)	2752	2768.3(3.0) [†]		
Λ_b	$0(\frac{1}{2}^{+})$	5622	5585	5620			5672	5620.2(1.6)		
Σ_b	$1(\frac{1}{2}^{+})$	5805	5795	5820		5824.2(9.0)	5847	5807.5(3.6) [‡]		
Σ_b^*	$1(\frac{3}{2}^{+})$	5834	5805	5850		5840.0(8.8)	5871	5829.0(3.3) [‡]		
Ξ_b	$\frac{1}{2}(\frac{1}{2}^+)$	5812		5810		5805.7(8.1)	5788	5774(26)*		
Ξ_b'	$\frac{1}{2}(\frac{1}{2}^+)$	5937		5950		5950.9(8.5)	5936			
Ξ_b^*	$\frac{1}{2}(\frac{3}{2}^+)$	5963		5980		5966.1(8.3)	5959			
Ω_b	$0(\frac{1}{2}^{+})$	6065		6060		6068.7(11.1)	6040			
Ω_b^*	$0(\frac{3}{2}^+)$	6088		6090		6083.2(11.0)	6060			

Table 2: Masses of the ground state heavy baryons (in MeV).

* error estimates of lattice calculations — \sim 50 MeV for charmed, \sim 100 MeV for bottom baryons † BaBar 2006; [‡] CDF 2006; ^{*} D0 2007

		G	Q = c		Q = b	
$I(J^P)$	Qd state	M(our)	M^{exp} PDG	$\overline{M}({\sf our})$	M^{exp} PDG	M^{exp} CDF
$0(\frac{1}{2}^{+})$	1S	2297	2286.46(14)	5622	5624(9)	5619.7(2.4)
$0(\frac{1}{2}^{-})$	1P	2598	2595.4(6)	5930		
$0(\frac{3}{2}^{-})$	1P	2628	2628.1(6)	5947		
$0(\frac{1}{2}^{+})$	2S	2772	2766.6(2.4)?	6086		
$0(\frac{3}{2}^{+})$	1D	2874		6189		
$0(\frac{5}{2}^+)$	1D	2883	2882.5(2.2)	6197		
$0(\frac{1}{2}^{-})$	2P	3017		6328		
$0(\frac{3}{2}^{-})$	2P	3034		6337		

Table 3: Masses of the excited Λ_Q (Q = c, b) heavy baryons (in MeV) (scalar diquark)

Table 4: Masses of the excited Σ_Q (Q = c, b) heavy baryons (in MeV) (axial vector diquark)

			Q	G	Q = b		
$I(J^P)$	Qd state	M(our)	M^{exp} PDG	M^{exp} BaBar	M^{exp} Belle	M(our)	M^{exp} CDF
$1(\frac{1}{2}^{+})$	1S	2439	2453.76(18)			5805	5807.5(3.6)
$1(\frac{3}{2}^{+})$	1S	2518	2518.0(5)			5834	5829.0(3.3)
$1(\frac{1}{2}^{-})$	1P	2805				6122	
$1(\frac{1}{2}^{-})$	1P	2795				6108	
$1(\frac{3}{2}^{-})$	1P	2799	$2802\binom{4}{7}$			6106	
$1(\frac{3}{2}^{-})$	1P	2761	2766.6(2.4)?			6076	
$1(\frac{5}{2}^{-})$	1P	2790				6083	
$1(\frac{1}{2}^{+})$	2S	2864				6202	
$1(\frac{3}{2}^{+})$	2S	2912		2939.8(2.3)?	$2938 \binom{3}{5}$?	6222	

		\overline{Q}	= c		Q = b	
$I(J^P)$	Qd state	$M({\sf our})$	M^{exp} PDG	$M({\sf our})$	$M^{ m exp}$ D0	M^{exp} CDF
$\frac{1}{2}(\frac{1}{2}^+)$	1S	2481	2471.0(4)	5812	5774(26)	5793(4)
$\frac{1}{2}(\frac{1}{2}^{-})$	1P	2801	2791.9(3.3)	6119		
$\frac{1}{2}(\frac{3}{2}^{-})$	1P	2820	2818.2(2.1)	6130		
$\frac{1}{2}(\frac{1}{2}^+)$	2S	2923		6264		

Table 5: Masses of the excited Ξ_Q (Q = c, b) heavy baryons with scalar diquark (in MeV).

Table 6: Masses of the excited Ξ_Q (Q = c, b) heavy baryons with axial vector diquark (in MeV).

			Q = b			
$I(J^P)$	Qd state	M(our)	M^{exp} PDG	M^{exp} Belle	M^{exp} BaBar	M(our)
$\frac{1}{2}(\frac{1}{2}^+)$	1S	2578	2578.0(2.9)			5937
$\frac{1}{2}(\frac{3}{2}^+)$	1S	2654	2646.1(1.2)			5963
$\frac{1}{2}(\frac{1}{2}^{-})$	1P	2934				6249
$\frac{1}{2}(\frac{1}{2}^{-})$	1P	2928				6238
$\frac{1}{2}(\frac{3}{2}^{-})$	1P	2931				6237
$\frac{1}{2}(\frac{3}{2}^{-})$	1P	2900				6212
$\frac{1}{2}(\frac{5}{2}^{-})$	1P	2921				6218
$\frac{1}{2}(\frac{1}{2}^+)$	2S	2984		2978.5(4.1)	2967.1(2.9)	6327
$\frac{1}{2}(\frac{3}{2}^+)$	2S	3035				6341
$\frac{1}{2}(\frac{1}{2}^+)$	1D	3132				6420
$\frac{1}{2}(\frac{3}{2}^+)$	1D	3127				6410
$\frac{1}{2}(\frac{3}{2}^+)$	1D	3131				6412
$\frac{1}{2}(\frac{5}{2}^+)$	1D	3123				6403
$\frac{1}{2}(\frac{5}{2}^+)$	1D	3087		3082.8(3.3)	3076.4(1.0)	6377
1, -7 +						

SEMILEPTONIC DECAYS

• Matrix elements of weak current

Matrix element of weak current $J^W_\mu = \bar{Q}' \gamma_\mu (1 - \gamma_5) Q$:

Figure 3: Lowest order vertex function $\Gamma^{(1)}$ contributing to the current matrix element.

Wave function $\Psi_{B_{Q'}\Delta}$ of the moving baryon is connected with the rest-frame wave function $\Psi_{B_{Q'}0} \equiv \Psi_{B_{Q'}}$ by the transformation

$$\Psi_{B_{Q'}\boldsymbol{\Delta}}(\mathbf{p}) = D_{Q'}^{1/2}(R_{L_{\boldsymbol{\Delta}}}^{W})D_{d}^{\mathcal{I}}(R_{L_{\boldsymbol{\Delta}}}^{W})\Psi_{B_{Q'}\mathbf{0}}(\mathbf{p}), \qquad \mathcal{I} = 0, 1,$$

where R^W – Wigner rotation, L_{Δ} – Lorentz boost from the baryon rest frame to a moving one. • Rotation matrix $D_{Q'}^{1/2}(R)$ of heavy quark spin:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} D_{Q'}^{1/2}(R_{L_{\boldsymbol{\Delta}}}^{W}) = S^{-1}(\mathbf{p}_{Q'})S(\boldsymbol{\Delta})S(\mathbf{p}),$$

$$S(\mathbf{p}) = \sqrt{\frac{\epsilon(p) + m}{2m}} \left(1 + \frac{\alpha \mathbf{p}}{\epsilon(p) + m}\right)$$

• Rotation matrix $D_d^{\mathcal{I}}(R)$ of diquark with spin $\mathcal{I} = 0, 1$:

 $D_d^0(R^W) = 1$ for scalar diquark $D_d^1(R^W) = R^W$ for axial vector diquark.

• Form factors of heavy baryons with scalar diquark

Hadronic matrix elements for $\Lambda_Q \rightarrow \Lambda_{Q'} e \nu$:

 $\langle \Lambda_{Q'}(v',s')|V^{\mu}|\Lambda_{Q}(v,s)\rangle = \bar{u}_{\Lambda_{Q'}}(v',s') \Big[F_{1}(w)\gamma^{\mu} + F_{2}(w)v^{\mu} + F_{3}(w)v'^{\mu} \Big] u_{\Lambda_{Q}}(v,s),$ $\langle \Lambda_{Q'}(v',s')|A^{\mu}|\Lambda_{Q}(v,s)\rangle = \bar{u}_{\Lambda_{Q'}}(v',s') \Big[G_{1}(w)\gamma^{\mu} + G_{2}(w)v^{\mu} + G_{3}(w)v'^{\mu} \Big] \gamma_{5}u_{\Lambda_{Q}}(v,s),$

$$w = v \cdot v' = \frac{M_{\Lambda_Q}^2 + M_{\Lambda_{Q'}}^2 - q^2}{2M_{\Lambda_Q}M_{\Lambda_{Q'}}}.$$

• In heavy quark limit $m_Q
ightarrow \infty$

$$F_1(w) = G_1(w) = \zeta(w), \qquad F_2(w) = F_3(w) = G_2(w) = G_3(w) = 0.$$

• At $1/m_Q$ order in HQET

$$F_{1}(w) = \zeta(w) + \left(\frac{\Lambda}{2m_{Q}} + \frac{\Lambda}{2m_{Q'}}\right) \left[2\chi(w) + \zeta(w)\right],$$

$$G_{1}(w) = \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) \left[2\chi(w) + \frac{w - 1}{w + 1}\zeta(w)\right],$$

$$F_{2}(w) = G_{2}(w) = -\frac{\bar{\Lambda}}{2m_{Q'}}\frac{2}{w + 1}\zeta(w), \qquad F_{3}(w) = -G_{3}(w) = -\frac{\bar{\Lambda}}{2m_{Q}}\frac{2}{w + 1}\zeta(w).$$

In our model up to $1/m_{Q} \ {\rm order}$

$$\begin{split} F_{1}(w) &= \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) [2\chi(w) + \zeta(w)] \\ &+ 4(1-\varepsilon)(1+\kappa) \left[\frac{\bar{\Lambda}}{2m_{Q'}} \frac{1}{w-1} - \frac{\bar{\Lambda}}{2m_{Q}}(w+1)\right] \chi(w), \\ G_{1}(w) &= \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) \left[2\chi(w) + \frac{w-1}{w+1}\zeta(w)\right] - 4(1-\varepsilon)(1+\kappa)\frac{\bar{\Lambda}}{2m_{Q}}w\chi(w), \\ F_{2}(w) &= -\frac{\bar{\Lambda}}{2m_{Q'}} \frac{2}{w+1}\zeta(w) - 4(1-\varepsilon)(1+\kappa) \left[\frac{\bar{\Lambda}}{2m_{Q'}} \frac{1}{w-1} + \frac{\bar{\Lambda}}{2m_{Q}}w\right] \chi(w), \\ G_{2}(w) &= -\frac{\bar{\Lambda}}{2m_{Q'}} \frac{2}{w+1}\zeta(w) - 4(1-\varepsilon)(1+\kappa)\frac{\bar{\Lambda}}{2m_{Q'}} \frac{1}{w-1}\chi(w), \\ F_{3}(w) &= -G_{3}(w) = -\frac{\bar{\Lambda}}{2m_{Q}} \frac{2}{w+1}\zeta(w) + 4(1-\varepsilon)(1+\kappa)\frac{\bar{\Lambda}}{2m_{Q}}\chi(w). \end{split}$$

* For $(1 - \varepsilon)(1 + \kappa) = 0$ HQET results are reproduced

 $(\kappa = -1 \text{ in our model})!$

The $\Lambda_b \rightarrow \Lambda_c$ differential decay rate near zero recoil:

$$\lim_{w \to 1} \frac{1}{\sqrt{w^2 - 1}} \frac{d\Gamma(\Lambda_b \to \Lambda_c e\nu)}{dw} = \frac{G_F^2 |V_{cb}|^2}{4\pi^3} M_{\Lambda_c}^3 (M_{\Lambda_b} - M_{\Lambda_c})^2 |G_1(1)|^2$$
$$G_1(w) = 1 - \hat{\rho}^2 (w - 1) + \cdots$$

In our model with $1/m_Q$ corrections: Experiment (DELPHI Collaboration): Lattice QCD (Bowler et al.):

$$\hat{\rho}^2 = 1.51$$

 $\hat{\rho}^2 = 2.03 \pm 0.46^{+0.72}_{-1.00}$
 $\hat{\rho}^2 = 1.1 \pm 1.0$

Our prediction for the branching ratio ($|V_{cb}|=0.041$, $au_{\Lambda_b}=1.23 imes10^{-12}$ s)

$$Br^{\text{theor}}(\Lambda_b \to \Lambda_c l\nu) = 6.9\%$$

Experiment

$$Br^{\exp}(\Lambda_b \to \Lambda_c l\nu) = \begin{cases} (5.0^{+1.1+1.6}_{-0.8-1.2})\% & \text{DELPHI}\\ (8.1 \pm 1.2^{+1.1}_{-1.6} \pm 4.3)\% & \text{CDF} \end{cases}$$
$$Br^{\exp}(\Lambda_b \to \Lambda_c l\nu + \text{anything}) = (9.1 \pm 2.1)\%. \quad \text{PDG}$$

Table 7: Comparison of different theoretical predictions for semileptonic decay rates Γ (in $10^{10} s^{-1}$) of bottom baryons.

Decay	Our	Singleton	Cheng	Körner	lvanov	lvanov	Cardarelli	Albertus	Huang
	RQM	NRQM	NRQM	NRQM	RTQM	BS	LF	NRQM	sum rule
$\Lambda_b o \Lambda_c e u$	5.64	5.9	5.1	5.14	5.39	6.09	5.08 ± 1.3	5.82	5.4 ± 0.4
$\Xi_b o \Xi_c e \nu$	5.29	7.2	5.3	5.21	5.27	6.42	5.68 ± 1.5	4.98	
$\Sigma_b \to \Sigma_c e \nu$	1.44	4.3			2.23	1.65			
$\Xi_b' o \Xi_c' e \nu$	1.34								
$\Omega_b o \Omega_c e u$	1.29	5.4	2.3	1.52	1.87	1.81			
$\Sigma_b \to \Sigma_c^* e \nu$	3.23				4.56	3.75			
$\Xi_b' ightarrow \Xi_c^* e u$	3.09								
$\Omega_b o \Omega_c^* e u$	3.03			3.41	4.01	4.13			

SUMMARY

- Mass spectra and semileptonic decays of heavy baryons qqQ are studied in heavy-quark-light-diquark picture
- Light quarks and light diquarks are treated fully relativistically
- $1/m_Q$ expansion is used only for heavy quarks
- Light diquarks are considered as nonlocal objects. Diquark wave functions are used to calculate diquark-gluon vertex describing diquark structure
- Predictions for the masses of the Ω_c^* , Σ_b , Σ_b^* and Ξ_b were recently confirmed experimentally
- Calculated masses of ground state and excited heavy baryons are in good agreement with available experimental data
- All presently available data on masses of heavy baryons can be accommodated in the picture treating a heavy baryon as the bound state of light diquark and heavy quark, experiencing orbital and radial excitations
- Diquark and baryon wave functions obtained in calculating heavy baryon masses are used for the calculation of semileptonic decays
- Structure of weak decay matrix elements agrees with model independent predictions of HQET both at leading and subleading orders of heavy quark expansion
- Leading and subleading Isgur-Wise functions for heavy baryon decays are explicitly expressed through the overlap integrals of wave functions in the whole accessible kinematic range
- Calculated decay rates agree with available experimental data