Search for rare $K_L^0 \rightarrow \pi^0 \nu \nu$ decay

Doroshenko Mikhail

Joint Institute for Nuclear Research, Dubna

Outline

- Introduction
- E391a experiment
 - Principles
 - Background estimations
 - Recent result
- Future experiments
 - E14 (J-PARC)
 - KLOD (Protvino)
- Conclusion

Introduction

- $K_L^0 \rightarrow \boldsymbol{p}^0 v \bar{v}$ decay
 - Direct CP violation: $\Delta S=1$
 - Small theoretical uncertainties ~1.5%
 - Direct measurement of the height of Unitarity triangle: BR ~ η^2
 - Rare decay: BR~2.8x10⁻¹¹
- Strict test of SM, sensitive to new physics
 - Unitarity triangle
 - Check consistency with B physics

E391 experiment (KEK,Japan)

E391 data analysis

- Finished full RUN II analysis
 - RUN III analysis is going on
- Blind analyses method
 - Hide signal and control regions up to estimation of backgrounds
- Backgrounds sources
 - K-> $\pi^0\pi^0$, K->γγ,
 - π^0 production on CC02 by halo neutrons
 - $-\pi^0$ and η production on CV by halo neutrons
 - Charge decays: Ke3,Kmu3

E391: background

- K-> $\pi^0\pi^0$
 - Estimated from MC
 - Confirm by K–> $\pi^0\pi^0\pi^0$ study as bgr for K–> $\pi^0\pi^0$
 - Simulate x11 statistics of data
- K->γγ negligible small
 - No additional particle
 - Balance P_T and acoplanarity angle

Beam

cm

Acoplanarity Angle (deg)

 θ_{acop} .

0

cm

E391 background

- π⁰ production on CC02 by halo neutrons
 - Tail to signal region due to errors in energy and position reconstruction of γ's
 - Estimated from special run data normalized to CC02 events
 - Z position of left edge of signal region was optimized by S/N

E391 background

- π⁰ production on CV by halo neutrons
 - Estimated from data using bifurcation method
 - Single background source
 - Confirm by MC
 - » Apply basic set of cuts: upstream+Csl veto
 - Independent sets of cuts
 - A=downstream detector veto
 - B=gamma selection

$$N_{AB} = (N_{AB} \times N_{AB}) / N_{AB}$$

E391 background

- η production on CV by halo neutrons
 - Estimated from MC with x200 statistics
 - MC well reproduce spectrum of η production on AI target run data

0.2

0.1

0.3

Invariant mass (GeV/c²)

0.4 0.5

0.6

E391 background summary

- Control region
 - (1) =1.9±0.2
 - CC02: 1.9±0.2
 - Observed 3 events
 - (4) =0.39±0.08
 - CC02: 0.26±0.07
 - CV-η: 0.04±0.01
 - CV-π⁰: 0.09±0.04
 - Observed 2 events
- Signal region
 - (2):=0.15±0.05
 - CC02: 0.11±0.04
 - CV-η: 0.04±0.02
 - (3):=0.26±0.11
 - CC02: 0.05±0.03
 - CV-η: 0.02±0.01
 - CV- π^0 : 0.08±0.04
 - $K_L \rightarrow \pi^0 \pi^0: 0.11 \pm 0.09$
 - Total 0.41±0.11

E391: Opening the signal box

Future experiments E14 ("KOTO") on J-PARC

- Step-1: first observation ~3.5 SM events
- Step-2 in future: optimize detector and beam line for ~100 SM events.
- Modify E391 setup
 - Thick and fine granular calorimeter
 - Full active CC02
 - New electronics
 - New BHPV

- Use the similar principles as E391 but different detector implementations
 - Small modules of main veto
 - Extendable decay region
 - Vacuum tank ~10⁻⁵Pa

- Calorimeter with possibility to measure the angle
- High intensity K_L beam
 - Working accelerator
- Possible to use micro-bunching to measure momentum of K_L by TOF

- Beamline
 - 10¹³ proton/spill @60GeV
 - Cu target 25cm (80% interactions)
 - Length = 31.5m
 - Pb absorber

- Parameters
 - 5.4x10⁷ K_L/spill
 - Mean KL momentum = 10GeV/c
 - $n/K_{L} \sim 10$
 - Halo n is suppressed on more than 5 orders

- <u>Calorimeter</u>
 - Measure energy, position and angle of gammas
 - Fast response
 - It can be made by set of blocks with enough X0
 - Block consists of 3 rotated (by 60⁰) layers of fibers with lead
 - Energy resolution ~5% @ 1GeV
 - Position resolution ~2mm
 - Angle resolution ~ 25mrad @ 1GeV

- <u>Main veto</u>
 - Shashluk type module (0.3Pb/1.5Sc)
 - 18 phe/1 MeV visible energy
 - σ_E/E~3% @ 1GeV
 - Or sandwich type modules located around beam axis
 - Extendable decay region

- <u>Beam veto</u> for gamma identification
 - Dual readout sci+quartz fibers
 - Ch/Sci ratio
 - transverse and longitudinal profile

DREAM colorimeter, NIM A536(2005),29

Transverse profile of 80GeV π shower N.Akchurin, R.Wigmans, Rev.Sci.Instrum. Vol74,2003

- Main cuts
 - 0.15<Egamma<6 GeV
 - $P_T > 120 MeV/c$
 - Decay vertex inside fiducial volume
 - Dist(γ–γ)>15cm
 - Energy gravity center > 20 cm
 - γ's pointed to reconstructed vertex ±0.5m

Acceptance = 15%4.8% decays in fiducial volume 5.4x10⁷ KL/spill

- Backgrounds on level of 1 SM signal event
 - $K_L \rightarrow \pi^0 \pi^0$ ~0.26
 - $K_{L} -> \gamma \gamma < 0.1$
 - $K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0} < 0.1$
 - Ke3 < 0.1

For 10 days beam time (~10⁴ spill/day) (10days x 10⁴spill/day) x (5.4x10⁷ KL/spill) x (0.048) x (0.15) x BR(2.8x10⁻¹¹) ≈1.1 event

Conclusion

- Interest for search for rear KL decays is increased
 J-PARK (Japan), KLOD (Russia), Project-X(FNAL), CERN
- Recent (but not final) E391 result
 - Upper limit BR($K_L \rightarrow \pi^0 \nu \ \overline{\nu}$)<6.8x10⁻⁸ (90%CL)
 - 5.9x10⁻⁷ KTeV (factor of 8.7 improvement) using Dalitz decay
 - Analysis of Run III data set is not finished yet
- E14 ("KOTO") experiment
 - Recommend for approval by J-PARC PAC
- KLOD experiment
 - Sensitivity of level ~1.1 SM events by 10 days with S/N~4
 - Possibility to get world level result in Russia

E391

Invariant mass of $2\pi^0$

