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V

Friction is dominant

To have ~ dS space the potential must be VERY flat:

The setup: slow-roll inflation

• This gives a period of inflation:                   Curvature, inhomogeneities and relics are
  diluted away.  For                 we have a completely smooth Universe.

• For                 we have quantum fluctuations of all the light degrees of freedom
                       .   Inflaton itself (scalar perturbations) and graviton (tensor modes).

In the observable Universe these initial quantum fluctuations are small ~ 10-5

What happens when they are ~1?



Outline

•  Motivations:
1. Experimental support of inflation
2. Global geometry of spacetime
3. Landscape + probability
4. Does dS make sense quantum mechanically?

• The qualitative picture of slow-roll eternal inflation

•  Is it possible to make quantitative progress? Is the system under perturbative control?
         Yes, quantitative results in an expansion in slow-roll parameters.

•  Transition to eternal inflation: a kind of phase transition at a given value of the parameters

•  Volume of the Universe at reheating as “order parameter”:
       All moments             of the volume diverge at the same critical point

•  Discretization of the system: branching process.
         At the same critical point a non-zero probability for an infinite volume develops



Slow-roll eternal inflation
V In the δφ=0 gauge, scalar 

perturbations are described by ζ: 

Typical size of quantum fluctuations:

Ratio between quantum and 
classical motion

What happens if we make ε smaller and smaller, until ζ ∼ 1?

Quantum motion as important as classical one. Reheating surface more and more curved.
Always some points which are still inflating: eternal inflation

Vilenkin 83, Linde 86



Is the system perturbative for                  ?
1) ζ∼1: large curvature? The large curvature comes from the embedding, the background

       geometry is still close to dS

In a spatially flat gauge, δφ:

As we make ε small the geometry gets closer to dS:
indeed the potential is flatter and flatter. Only δφ gets large.

No control of the geometry after inflation:
it differs of order 1 from unperturbed FRW! 

2) Large quantum fluctuations are not a problem, unless they signal strong coupling.
    Dominant interactions come through gravity (the potential is very flat)  

Small!Maldacena 02

Goncharov, Linde, Mukhanov 87



Reheating volume: smoothing
For small ε free scalar,

 living in exact dS  

At leading order in slow-roll, 
       and        are constant

Only dimless parameter is the ratio:

Characterize the onset of eternal inflation studying the reheating volume

Reheating at:
Look at the inflaton configuration smoothed over
physical distances Λ−1

As Universe expands more and more modes enter
in the filter function: “quantum motion”

If Λ<< H, the surface is space-like 

+ similar for the variance



Diffusion equation
Smoothing keeps only modes 

which are large wrt H-1
Quantum effects are exp suppressed: 

classical stochastic variables

For points which are not
resolved by the smoothing:

~ H3 t

Diffusion: like 
brownian motionThe system is now

very simple

+ exponential expansion

a ~ eHt

The reheating volume is a very non-linear
function of my field.

Let us study its statistical properties

Starobinsky, Linde, Ford, Vilenkin 82



The average reheating volume
Unable to study directly ρ(V). Let us study its momenta.

Reheating time at x
Pdf of being at φ

at time t

Diffusion equation with 
boundary condition at φr

At large t: It converges iff

Image term

see also Winitzki 02Independent of initial condition!



What happens at Ω=1?

Do all moments diverge at Ω=1 ? NO!

Anticipating the conclusion: at Ω=1 a non-zero probability of infinite volume develops 
              (and this probability is 1 is the limit of large initial volume)  

We have identified a critical point. What happens there?

for sufficiently large n, diverges for any value of Ω!

Indeed consider the probability of being at                        (backwards wrt classical motion!) 

The classical volume from that point is ~

For the momentum diverges 

It requires the possibility of fluctuating infinitely far away from the barrier
The large time limit does not commute with the infinite interval limit

All moments diverge at Ω=1 on a finite interval 

~ H3 t



The divergence of the variance
The average was simple!

I need the joint 
reheating pdf:

2 point pdf

For              the 2 points 
are not resolved and evolve together. 
Then they separate and evolve independently. 

Solution is a convolution 
of random walks

The integrals can be done in saddle point.

The variance converges for Ω > 9/8 > 1

Check. The most likely splitting point is
    dominated by infinitely backwards fluctuations 



Moments on a finite segment

~ H3 t

Reflecting
Diffusion eq:

Boundary cond:

Separation of variables:

But if we keep the segment finite, long t dynamics dominated by lowest eigenvalue

Removing φup we recover
previous results

Straightforward proof all
           diverge at Ω=1 

Limits do not commute:              diffusion knows if we live on a finite segment



A discrete “toy” model
Discrete version of the model:
multi-type branching process

N children at each stepExtinction probability

Dead bacteria

Galton-Watson: Single type model with offspring probability pk (e.g. family names)  

Generating function:                  Gen function at n-th step is functional 
            iterate of f: fn(s) =f(…f(f(s))).

       Extinction probability < 1 
                 iff  

s

f(s)

s

f(s)(1,1) (1,1)

For finite number of sites: maximum λ of the matrix of averages
• λ<1 : subcritical,    extinction probability = 1
• λ>1 : supercritical, extinction probability < 1

(see also Winitzki 05)



The chain and the real case
Studying the behavior of Mn at large n

Below this value all moments diverge 
+ non-zero probability of never terminating 

Continuum limit to reproduce diffusion equation

Reproduce the critical value of Ω, the factor 9/8 for the variance in the infinite case

Subcritical Supercritical

Probability lost 
to infinity

How does a probability for infinite volume develops?



Conclusions

1. The regime of eternal inflation ζ~1 can be perturbatively studied (during inflation).
Slow-roll expansion

2.      Reheating volume (smoothed) as “order parameter”

3.      Diffusion equation, <V> converges for

4.      Spurious divergences of higher moments for infinite line

5.      From the discrete model, at Ω=1 a non-zero probability of infinite V develops, 
        this probability is 1 for large initial volume

6.      Subleading terms in slow-roll? 



Generalization
1.     In slow-roll       and        are  ~ constant in H-1, but vary over a  long interval

   Eternal inflation (non-zero prob of infinite volume)
             iff Ω<1 for Δφ > H

2.     What is the effect of slow-roll corrections?

• They do not completely change the picture: no t1+ε. It makes sense to perturb in ε.

• Random walk picture not valid anymore. Coupling among different modes.

• Is the transition still sharp? The possibility of infinite V is still a good criterion?

3. Non-minimal models of inflation. 

• Eternal inflation out of the regime of validity of EFT if cS<1 and for ghost inflation

• Multi-field models

V



Eternal inflation
V

• Jumps backwards give a longer inflation and thus more volume
For suff. slow classical motion we expect an eternal process

• Global structure of the Universe

• Population of the landscape, probabilities...

+ tunnelling among vacua

“Quantum jumps”

V

Steinhardt, Vilenkin, Linde...


