Non-minimal coupling in inflation and inflating with the Higgs boson

F. Bezrukov

EPFL, Lausanne, Switzerland Institute for Nuclear Research, Moscow, Russia

QUARKS'08

15th International Seminar on High Energy Physics Sergiev Posad, Russia, 23-29 May, 2008.

based on F.B., M.Shaposhnikov, Phys. Lett. B 659, 703 (2008)

Outline

- 1 Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation
- 2 Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters
- SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass
- Conclusions

Outline

- Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation
- 2 Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters
- SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass
- Conclusions

Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega 1| \lesssim 10^{-59}$)
- Entropy of the Universe S $\sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P^{-1}$)
- Horizon problem

Solution

Inflation.

Cosmological implications

Problems in cosmology

- Flatness problem (at $T \sim M_P$ density was tuned $|\Omega 1| \lesssim 10^{-59}$)
- Entropy of the Universe $S \sim 10^{87}$
- Size of the Universe (at $T \sim M_P$ size was $10^{29} M_P^{-1}$)
- Horizon problem

Solution

Inflation!

CMB

$\lambda \phi^4$ inflation

One scalar field

$$S = \int d^4x \left[\frac{\partial_\mu \phi \, \partial^\mu \phi}{2} - V(\phi) \right] , \qquad V(\phi) = \frac{\lambda}{4} \phi^4$$

Predicts primordial perturbation parameters

• COBE normalization $U/\varepsilon = (0.027 M_P)^4$

$$\Rightarrow \lambda \simeq 10^{-13}$$

- Spectral index $n_s = 0.95$
- Tensor/scalar ratio r = 0.26

QUARKS'08

$\lambda \phi^4$ inflation predictions

Usual conclusion $\lambda \phi^4$ is disfavoured

$\lambda \phi^4$ inflation predictions

Usual conclusion

 $\lambda \phi^4$ is disfavoured

Outline

- Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation
- 2 Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters
- SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass
- 4 Conclusions

QUARKS'08

Possible operators in the model+gravity

- Dimension < 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_P^2}{2} R + \frac{\partial_\mu \phi \partial^\mu \phi}{2} - V(\phi) - \frac{\xi}{2} \phi^2 R + aR^2 + bR_{\mu\nu} R^{\mu\nu} + cR_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + d\Box R \right]$$

 The non-minimally coupled term is in fact required by the renormalization properties of the theory in curved space-time background

Possible operators in the model+gravity

- Dimension < 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_P^2}{2} R + \frac{\partial_\mu \phi \partial^\mu \phi}{2} - V(\phi) - \frac{\xi}{2} \phi^2 R + aR^2 + bR_{\mu\nu} R^{\mu\nu} + cR_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + d\Box R \right]$$

 The non-minimally coupled term is in fact required by the renormalization properties of the theory in curved space-time background

Possible operators in the model+gravity

- Dimension < 4
- No new degrees of freedom (no higher derivatives)

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_P^2}{2}R + \frac{\partial_\mu \phi \partial^\mu \phi}{2} - V(\phi) - \frac{\xi}{2}\phi^2 R + aR^2 + bR_{\mu\nu}R^{\mu\nu} + cR_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho} + d\Box R \right]$$

 The non-minimally coupled term is in fact required by the renormalization properties of the theory in curved space-time background

Non-minimally coupled scalar field—inflation

Quite an old idea

Add $\phi^2 R$ term to/instead of the usual $M_P R$ term in the gravitational action

- A.Zee'78, L.Smolin'79, B.Spokoiny'84
- D.Salopek J.Bond J.Bardeen'89

"Jordan frame" action

$$S_{J}=\int d^{4}x\sqrt{-g}\left\{ -\frac{M^{2}+\xi\phi^{2}}{2}R+g_{\mu\nu}\frac{\partial^{\mu}\phi\partial^{\nu}\phi}{2}-\frac{\lambda}{4}\phi^{4}\right\}$$

PFU POLYTECHNIQUE ALI DE LEISANNE

Conformal transformation

It is possible to get rid of the non-minimal coupling by the conformal transformation (field redefinition)

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} \; , \quad \Omega^2 = 1 + rac{\xi \phi^2}{M_P^2}$$

and also redefinition of the scalar field to make canonical kinetic term

$$\frac{d\hat{\phi}}{d\phi} = \sqrt{\frac{\Omega^2 + 6\xi^2\phi^2/M_P^2}{\Omega^4}} \quad \Longrightarrow \left\{ \begin{array}{l} \phi \simeq \hat{\phi} & \text{for } \phi < M_P/\xi \\ 1 + \frac{\xi\phi^2}{M_P^2} \simeq \exp\left(\frac{2\hat{\phi}}{\sqrt{6}M_P}\right) & \text{for } \phi > M_P/\xi \end{array} \right.$$

Resulting action (Einstein frame action)

$$S_E = \int d^4x \sqrt{-\hat{g}} \Bigg\{ -\frac{M_P^2}{2} \hat{R} + \hat{g}_{\mu\nu} \frac{\partial^{\mu} \hat{\phi} \partial^{\nu} \hat{\phi}}{2} - \frac{1}{\Omega(\hat{\phi})^4} \frac{\lambda}{4} \phi(\hat{\phi})^4 \Bigg\}$$

Case of large ξ

inflation in the Standard Model

Easy to analyse and is in fact the main case we will need for

• Generic ξ just interpolates between usual (minimal coupling) case and large ξ case.

Inflationary potential

For
$$\hat{\phi} \gtrsim M_P$$
: $U(\hat{\phi}) \simeq \frac{\lambda M_P^4}{4\xi^2} \left(1 - \exp\left(-\frac{2\hat{\phi}}{\sqrt{6}M_P}\right)\right)^2$

Slow roll stage

$$\begin{split} \varepsilon &= \frac{M_P^2}{2} \left(\frac{dU/d\hat{\phi}}{U} \right)^2 \simeq \frac{4M_P^4}{3\xi^2 \phi^4} \simeq \frac{4}{3} e^{-\frac{4\hat{\phi}}{\sqrt{6}M_P}} \\ \eta &= M_P^2 \frac{d^2 U/d\hat{\phi}^2}{U} \simeq \frac{4M_P^4}{3\xi^2 \phi^4} \left(1 - \frac{\xi \phi^2}{M_P^2} \right) \simeq \frac{4}{3} e^{-\frac{4\hat{\phi}}{\sqrt{6}M_P}} (1 - e^{\frac{2\hat{\phi}}{\sqrt{6}M_P}}) \end{split}$$

Slow roll ends at $\hat{\phi}_{\sf end} \simeq M_P$ (or $\phi_{\sf end} \simeq M_P/\sqrt{\xi}$)

Number of e-folds of inflation at the moment ϕ_N is $N \simeq \frac{6}{8} \frac{\phi_N^2 - \phi_{\rm end}^2}{M_{\odot}^2/\mathcal{E}}$

$$\hat{\phi}_{60} \simeq 5M_P$$

COBE normalization $U/\varepsilon = (0.027 M_P)^4$ gives

$$\xi \simeq \sqrt{rac{\lambda}{3}} rac{ extsf{N}_{ extsf{COBE}}}{0.027^2} \simeq 49000 \sqrt{\lambda}$$

Smallness of λ can be compensated by large ξ

CMB parameters—spectrum and tensor modes

$$n = 1 - 6\varepsilon + 2\eta \simeq 1 - \frac{8(4N+9)}{(4N+3)^2} \simeq 0.97$$

$$r = 16\varepsilon \simeq \frac{192}{(4N+3)^2} \simeq 0.0033$$

Before moving on to using the Higgs field as the inflaton, let us elaborate a bit on generic ξ case

What minimal ξ is needed to reconcile $\lambda \phi^4$ inflation with CMB data?

S.Tsujikawa B.Gumjudpai'04

ξ dependence of λ

WMAP-5 bounds

Message

With non-minimal coupling it is very natural for $\lambda \phi^4$ inflation to be compatible with observations!

Outline

- Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation
- $extbf{2}$ Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters
- SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass
- Conclusions

Non-minimaly coupled Higgs boson

$$S = \int d^4x \sqrt{-g} \left[\text{Tr}(F_{\mu\nu}F^{\mu\nu}) + \frac{|D_{\mu}H|^2}{2} - V(H) + \bar{\Psi}\not{D}\Psi + YH\bar{\Psi}_L\Psi_R \right]$$
$$-\frac{M_P^2}{2}R - \xi H^{\dagger}HR \right]$$

COBE normalization $U/\varepsilon = (0.027 M_P)^4$ now determines ξ

$$\xi \simeq \sqrt{rac{\lambda}{3}} rac{N_{\mathsf{COBE}}}{0.027^2} \simeq 49000 \sqrt{\lambda} = 49000 rac{m_H}{\sqrt{2} v}$$

Connection of the parameter ξ and the Higgs mass! Note: $\xi v^2 \ll M_P^2$, so all inflationary analysis can be made just with quartic potential

After inflation—back to the SM

$$rac{M_P}{\xi} < \hat{\phi} < M_P: \quad U \simeq rac{\lambda \, M_P^2}{6 \xi^2} \hat{\phi}^2, \;\; \Omega \simeq 1, \; \hat{\phi} \simeq \sqrt{rac{3}{2}} rac{\xi \, h^2}{M_P}, \quad \; T_{\text{reh}} \gtrsim 10^{13} \, \text{GeV}$$

For $\hat{\phi} \lesssim M_P/\xi$: the Standard Model

21/26

CMB parameters—spectrum and tensor modes

$$n = 1 - 6\varepsilon + 2\eta \simeq 1 - \frac{8(4N+9)}{(4N+3)^2} \simeq 0.97$$

$$r = 16\varepsilon \simeq \frac{192}{(4N+3)^2} \simeq 0.0033$$

Not the end of the story — see next talk

Could be a problem

In the ordinary situation effective potential is generated

$$\Delta U(\phi) \sim \frac{m^4(\phi)}{64\pi^2} \log \frac{m^2(\phi)}{\mu^2} + A\Lambda^2 + B\Lambda^4$$

We suppose that quadratic divergences are dealt with (eg. in dimensional regularization)

Could be a problem

In the ordinary situation effective potential is generated

$$\Delta U(\phi) \sim rac{m^4(\phi)}{64\pi^2} \log rac{m^2(\phi)}{\mu^2}$$

standard Yukawa interaction $m = y \cdot h$

$$\Delta U \propto -y^4 \phi^4 \log \frac{\phi^2}{\mu^2}$$

Spoils flatness of the potential (for top quark $y \sim 1$!)

This is also cured by non-minimal coupling!

Effective potential is still generated

$$\Delta U(\hat{\phi}) \sim \frac{m^4(\hat{\phi})}{64\pi^2} \log \frac{m^2(\hat{\phi})}{\mu^2}$$

Conformal transformation: fermions

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ \bar{\psi} \partial \psi + y \phi \bar{\psi} \psi \right\}$$

$$\hat{\psi} = \Omega^{-3/2} \psi$$

$$S_{E} = \int d^{4}x \sqrt{-\hat{g}} \left\{ \bar{\psi} \partial \hat{\psi} + y \frac{\phi(\hat{\phi})}{\Omega(\hat{\phi})} \bar{\psi} \hat{\psi} \right\}$$

This is also cured by non-minimal coupling!

Effective potential is still generated

$$\Delta U(\hat{\phi}) \sim rac{m^4(\hat{\phi})}{64\pi^2} \log rac{m^2(\hat{\phi})}{\mu^2}$$

The interactions are suppressed now!

$$m(\hat{\phi}) = y \frac{\phi(\hat{\phi})}{\Omega(\hat{\phi})} \overset{\hat{\phi} \to \infty}{\longrightarrow} \text{const}$$

(where $\Omega(\hat{\phi}) \propto \phi(\hat{\phi})$ for large $\hat{\phi}$)

$$\implies \qquad \Delta U(\hat{\phi}) \to y^4 \frac{M_P^4}{\xi^2} \left(1 - e^{-\frac{2\hat{\phi}}{\sqrt{6}M_P}} \right)^2 \log \left(\frac{m^2(\hat{\phi})}{\mu^2} \right) \to \text{const}$$

This is also cured by non-minimal coupling!

Effective potential is still generated

$$\Delta U(\hat{\phi}) \sim rac{m^4(\hat{\phi})}{64\pi^2} \log rac{m^2(\hat{\phi})}{\mu^2}$$

The same for self interactions

$$\begin{split} m^2(\hat{\phi}) &= U''(\hat{\phi}) = \frac{\lambda M_P^2}{3\xi^2} \left(2 \mathrm{e}^{-\frac{2\hat{\phi}}{\sqrt{6}M_P}} - 1 \right) \mathrm{e}^{-\frac{2\hat{\phi}}{\sqrt{6}M_P}} \stackrel{\hat{\phi} \to \infty}{\longrightarrow} 0 \\ &\Longrightarrow \quad \Delta U(\hat{\phi}) \to 0 \end{split}$$

Expected window for the Higgs mass

Standard Model should remain applicable up to

$$M_P/\xi \simeq 10^{14}\,\mathrm{GeV}$$

We expect the Higgs mass

$$130\,\mathrm{GeV} < M_H < 190\,\mathrm{GeV}$$

Yu.Pirogov O.Zenin'98

Outline

- Inflation—"standard" approach
 - Cosmological requirements
 - Large field chaotic inflation
- 2 Non-minimal coupling in $\lambda \phi^4$
 - The action
 - Conformal transformation
 - Large non-minimal coupling limit
 - Generic non-minimal coupling case
 - WMAP-5 allowed parameters
- SM Higgs as the inflaton
 - Non-minimally coupled Standard Model
 - Radiative corrections—not (too) dangerous
 - Higgs mass
- Conclusions

Conclusions

Main conclusion

Non-minimal gravity coupling in inflationary models changes predictions a lot and in a very interesting way!

- Adding non-minimal coupling $\frac{\xi\phi^2}{2}R$ with small $\xi>10^{-3}$ makes $\lambda\phi^4$ chaotic inflation agree with WMAP data.
- These type of models generally gives a very small amount of tensor perturbations after inflation
- Adding non-minimal coupling ξH[†]HR of the Higgs field to the gravity makes inflation possible without introduction of new fields
 - ▶ The new parameter of the model, non-minimal coupling ξ , relates the normalization of CMB fluctuations and the Higgs mass $\xi \simeq 49000$ mH $/\sqrt{2}v$
 - ▶ spectral index $n_s \simeq 0.97$
 - ▶ tensor/scalar ratio $r \simeq 0.0033$

Conclusions

Main conclusion

Non-minimal gravity coupling in inflationary models changes predictions a lot and in a very interesting way!

- Adding non-minimal coupling $\frac{\xi \phi^2}{2}R$ with small $\xi > 10^{-3}$ makes $\lambda \phi^4$ chaotic inflation agree with WMAP data.
- These type of models generally gives a very small amount of tensor perturbations after inflation
- Adding non-minimal coupling $\xi H^{\dagger}HR$ of the Higgs field to the gravity makes inflation possible without introduction of new fields
 - ▶ The new parameter of the model, non-minimal coupling ξ , relates the normalization of CMB fluctuations and the Higgs mass $\xi \simeq 49000 m_H/\sqrt{2}v$
 - ▶ spectral index $n_s \simeq 0.97$
 - tensor/scalar ratio r ≈ 0.0033

