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coupling αs(μ
2) = (4π/b0)as[L] with L = ln(μ2/Λ2)

RG equation
d as[L]

d L
= −a2

s − c1 a3
s − . . .

1-loop solution generates Landau pole singularity:
as[L] = 1/L

2-loop solution generates square-root singularity:
as[L] ∼ 1/

√
L + c1lnc1

PT series: D[L] = 1 + d1as[L] + d2a
2
s[L] + . . .

RG evolution: B(Q2) =
[
Z(Q2)/Z(μ2)

]
B(μ2)

reduces in 1-loop approximation to
Z ∼ aν [L]

∣∣∣
ν = ν0 ≡ γ0/(2b0)
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(Shirkov&Solovtsov; 1996) regions

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = lnQ2/Λ2, {An[L]}n∈N

Minkowskian: q2 = s, Ls = lns/Λ2, {An[Ls]}n∈N
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Different couplings in Minkowskian (Radyushkin,
Krasnikov&Pivovarov; 1982) and Euclidean
(Shirkov&Solovtsov; 1996) regions

Based on RG + Causality
⇓ ⇓

UV asymptotics Spectrality

Euclidean: −q2 = Q2, L = lnQ2/Λ2, {An[L]}n∈N

Minkowskian: q2 = s, Ls = lns/Λ2, {An[Ls]}n∈N

PT
∑∑∑
m

dmam
s (Q2) ⇒

∑∑∑
m

dmAm(Q2) APT

m – power ⇒ m – index
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Spectral representation

By analytization we mean “Källen–Lehman” representation

[
f(Q2)

]
an =

∫∫∫ ∞

0

ρf (σ)

σ + Q2 − iε
dσ

with spectral density ρf (σ) = Im
[
f(−σ)

]
/π.
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APT graphics: Distorting mirror

First, couplings: A1(s) and A1(Q
2)
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APT graphics: Distorting mirror

Second, square-images: A2(s) and A2(Q
2)
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Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO of
pQCD: additional logs depending on scale that serves
as factorization or renormalization scale
[Karanikas&Stefanis – PLB 504 (2001) 225]
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Problems of APT

Open Questions

“Analytization” of multi-scale amplitudes beyond LO of
pQCD: additional logs depending on scale that serves
as factorization or renormalization scale
[Karanikas&Stefanis – PLB 504 (2001) 225]

Evolution induces some non-integer, fractional, powers
of coupling constant

Resummation of gluonic corrections, giving rise to
Sudakov factors, under “Analytization” difficult task
[Stefanis, Schroers, Kim – PLB 449 (1999) 299;
EPJC 18 (2000) 137]
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F [L] =
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m

fm am
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RG-improvment to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
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}
1-loop−→ [as[L]]γ0/(2β0)

Thresholds in FAPT: Euclid vs Minkowski – p. 12



Quarks’08 @ Sergiev Posad, May 23–29, 2008

Problems of APT

In standard QCD PT we have not only power series
F [L] =

∑∑∑
m

fm am
s [L], but also:

RG-improvment to account for higher-orders →

Z[L] = exp

{∫∫∫ as[L] γ(a)

β(a)
da

}
1-loop−→ [as[L]]γ0/(2β0)

Factorization → [as[L]]n Lm
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Fractional

APT
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Constructing one-loop FAPT
In one-loop APT we have a very nice recursive relation

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L]
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Constructing one-loop FAPT
In one-loop APT we have a very nice recursive relation

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L]

and the same in Minkowski domain

An[L] =
1

(n − 1)!

(
−

d

dL

)n−1

A1[L] .

We can use it to construct FAPT.
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FAPT(E): Properties of Aν[L]

First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν.
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First, Euclidean coupling (L = L(Q2)):

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

Here F (z, ν) is reduced Lerch transcendent. function. It is
analytic function in ν. Properties:

A0[L] = 1;

A−m[L] = Lm for m ∈ N;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N;
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FAPT(M): Properties of Aν[L]

Now, Minkowskian coupling (L = L(s)):

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
π2 + L2

)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions.
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(
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√
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)]
π(ν − 1) (π2 + L2)

(ν−1)/2

Here we need only elementary functions. Properties:

A0[L] = 1;

A−1[L] = L;

A−2[L] = L2 −
π2

3
, A−3[L] = L

(
L2 − π2

)
, . . . ;

Am[L] = (−1)mAm[−L] for m ≥ 2 , m ∈ N;

Am[±∞] = 0 for m ≥ 2 , m ∈ N
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FAPT(E): Graphics of Aν[L] vs. L

Aν [L] =
1

Lν
−

F (e−L, 1 − ν)

Γ(ν)

First, graphics for fractional ν ∈ [2,3] :
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FAPT(M): Graphics of Aν[L] vs. L

Aν [L] =
sin

[
(ν − 1)arccos

(
L/

√
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Compare with graphics in Minkowskian region :
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FAPT(E): Graphics of Aν[L] vs. L
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FAPT(M): Graphics of Aν[L] vs. L

A1[0] =
1

2
, A2[0] =

1

π2
, A4[0] = −

1
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, A3[0] = A5[0] = 0

Compare with graphics in Minkowskian region :
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Set
{

aν
}

ν∈R

{
Am,Am

}
m∈N

{
Aν,Aν

}
ν∈R
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Theory PT APT FAPT

Set
{
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}

ν∈R

{
Am,Am

}
m∈N

{
Aν,Aν

}
ν∈R

Series
∑∑∑
m

fm am
∑∑∑
m

fm Am
∑∑∑
m

fm Am

Inv. powers (a[L])−m — A−m[L] = Lm
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT
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}
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{
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}
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Series
∑∑∑
m

fm am
∑∑∑
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∑∑∑
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fm Am

Inv. powers (a[L])−m — A−m[L] = Lm

Products aμaν = aμ+ν — —
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Set
{

aν
}

ν∈R

{
Am,Am

}
m∈N

{
Aν,Aν

}
ν∈R

Series
∑∑∑
m

fm am
∑∑∑
m

fm Am
∑∑∑
m

fm Am

Inv. powers (a[L])−m — A−m[L] = Lm

Products aμaν = aμ+ν — —

Index deriv. aν lnka — DkAν
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Comparison of PT, APT, and FAPT

Theory PT APT FAPT

Set
{

aν
}

ν∈R

{
Am,Am

}
m∈N

{
Aν,Aν

}
ν∈R

Series
∑∑∑
m

fm am
∑∑∑
m

fm Am
∑∑∑
m

fm Am

Inv. powers (a[L])−m — A−m[L] = Lm

Products aμaν = aμ+ν — —

Index deriv. aν lnka — DkAν

Logarithms aνLk — Aν−k
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Development of FAPT:

Higher Loops and Logs
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Development of FAPT: Two-loop coupling

Two-loop equation for normalized coupling a = b0 α/(4π)
reads

da(2)

dL
= −a2

(2)[L]
[
1 + c1 a(2)[L]

]
with c1 ≡

b1

b2
0
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Development of FAPT: Two-loop coupling

Two-loop equation for normalized coupling a = b0 α/(4π)
reads

da(2)

dL
= −a2

(2)[L]
[
1 + c1 a(2)[L]

]
with c1 ≡

b1

b2
0

RG solution of this equation assumes form:

1

a(2)[L]
+ c1ln

[
a(2)[L]

1 + c1a(2)[L]

]
= L =

1

a(1)[L]
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Development of FAPT: Two-loop coupling

RG solution of this equation assumes form:

1

a(2)[L]
+ c1ln

[
a(2)[L]

1 + c1a(2)[L]

]
= L =

1

a(1)[L]

Expansion of a(2)[L] in terms of a(1)[L] = 1/L with
inclusion of terms O(a3

(1)):

a(2) = a(1) + c1 a2
(1) ln a(1) + c2

1 a3
(1)

(
ln2a(1) + ln a(1) − 1

)
+ . . .
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Development of FAPT: Two-loop coupling

RG solution of this equation assumes form:

1

a(2)[L]
+ c1ln

[
a(2)[L]

1 + c1a(2)[L]

]
= L =

1

a(1)[L]

Expansion of a(2)[L] in terms of a(1)[L] = 1/L with
inclusion of terms O(a3

(1)):

a(2) = a(1) + c1 a2
(1) ln a(1) + c2

1 a3
(1)

(
ln2a(1) + ln a(1) − 1

)
+ . . .

Analytic version of this expansion:

A(2)
1 [L] = A(1)

1 + c1 D A(1)
ν=2 + c2

1

(
D2 + D1 − 1

)
A(1)

ν=3 + . . .
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Development of FAPT: Two-loop coupling

Nice convergence of this expansion for A(2)
1 [L]:

ΔFAPT
2 [L] = 1 −

A(1)
1 [L] + c1 DA(1)

ν=2[L]

A(2)
1 [L]

-10 -5 0 5 10
-0.1

-0.05

0

0.05

0.1

LΔPT
2 (L)

ΔFAPT
2 (L)
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Development of FAPT: Two-loop coupling

Nice convergence of this expansion for A(2)
1 [L]:

ΔFAPT
3 [L] = ΔFAPT

2 [L] −
c2
1

(
D2 + D1 − 1

)
A(1)

ν=3[L]

A(2)
1 [L]

-10 -5 0 5 10
-0.1

-0.05

0

0.05

0.1

L

ΔFAPT
3 (L)

ΔPT
2 (L)
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FAPT: Two-loop coupling with log L(2)
ν,m[L]

Now, coupling with log:

L(2)
ν,1[L] = AE

[(
a(2)

)ν
L

] [(
a(2)

)ν
L

]
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FAPT: Two-loop coupling with log L(2)
ν,m[L]

Now, coupling with log:

L(2)
ν,1[L] = AE

[(
a(2)

)ν
L

] [(
a(2)

)ν
L

]
= A(2)

ν−1 + c1 D A(2)
ν − c2

1 A(2)
ν+1 +

c3
1

2
A(2)

ν+2 + . . .
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FAPT: Two-loop coupling with log L(2)
ν,m[L]

Now, coupling with log:

L(2)
ν,1[L] = AE

[(
a(2)

)ν
L

]
= A(2)

ν−1 + c1 D A(2)
ν − c2

1 A(2)
ν+1 +

c3
1

2
A(2)

ν+2 + . . .

Exact spectral density can be easily found:

ρ
(2)
Lν,1

[L] =
R(1)[L]

Rν
(2)[L]

sin
[
νϕ(2)[L] − ϕ(1)[L]

]
with R(1,2)[L] and ϕ(1,2)[L] being inverse modula and
phases of corresponding 1- and 2-loop densities.
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FAPT: Two-loop coupling with log L(2)
ν,m[L]

Relative deviations:

Δ3,4(L1.31,1) =
L(1)

1.31,1 + O(c1) + O(c2
1) + O(c3

1) + O(c4
1)

L(2)
1.31,1

− 1

-10 -5 0 5 10

-0.04

-0.02

0

0.02

0.04

L

Δ4(L1.31,1[L])

Δ3(L1.31,1[L])
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Development of FAPT:

Heavy-Quark Thresholds
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Conceptual scheme of FAPT

PT:
[
a(Q2)

]ν

S.D.: ρν(σ)

AM AE

Aν(s) Aν(Q2)
D̂−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed and factorized out.
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Conceptual scheme of FAPT

PT:
[
αs(Q

2;Nf)
]ν

S.D.: ρν(σ;Nf)

AM AE

Aν(s;Nf) Aν(Q2;Nf)
D̂−→←−

R̂ = D̂−1
FAPT:

Here Nf is fixed, but not factorized out.
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Conceptual scheme of FAPT

PT:
[
α glob

s (Q2)
]ν

S.D.: ρ glob
ν (σ)

AM AE

A glob
ν (s) A glob

ν (Q2)
D̂−→←−

R̂ = D̂−1

FAPT:

Here we see how “analytization” takes into account
Nf -dependence.
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).

Then:

Aglob
ν [L]= θ (L < L4)

[
Aν [L; 3] − Aν [L4; 3] + Aν [L4+λ4; 4]

]
+ θ (L ≥ L4)Aν [L+λ4; 4]
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Global FAPT: Single threshold case

Consider for simplicity only one threshold at s = m2
c

with transition Nf = 3 → Nf = 4.

Denote: L4 = ln (m2
c/Λ2

3) and λ4 = ln (Λ2
3/Λ2

4).

Then:

Aglob
ν [L]= θ (L < L4)

[
Aν [L; 3] − Aν [L4; 3] + Aν [L4+λ4; 4]

]
+ θ (L ≥ L4)Aν [L+λ4; 4]

and

Aglob
ν [L]=Aν [L+λ4; 4] +

L4∫∫∫
−∞

ρν [Lσ; 3] − ρν [Lσ+λ4; 4]

1 + eL−Lσ
dLσ
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Global FAPT: Deviation from fixed Nf-case

In Euclidean domain:

Aglob
ν [L] = Aν [L + λ4; 4] + ΔAν [L]

with:

ΔAν [L] =

L4∫∫∫
−∞

ρν [Lσ; 3] − ρν [Lσ+λ4; 4]

1 + eL−Lσ
dLσ
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Global FAPT: Deviation from fixed Nf-case

In Minkowskian domain:

Aglob
ν [L] = Aν [L+λ4; 4] + ΔAν [L]

with:

ΔAν [L] = θ (L < L4)
[

Aν [L; 3] − Aν [L4; 3]

+Aν [L4+λ4; 4] − Aν [L+λ4; 4]
]
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Global FAPT: Deviation from fixed Nf-case

Euclidean deviation: Aglob
ν [L] = Aν [L+λ4; 4]+ΔAν [L]

-10 -5 0 5 10

-0.2

-0.1

0

0.1

0.2

L

ΔĀ(2)
1 [L]

Aglob;(2)
1 [L]
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Global FAPT: Deviation from fixed Nf-case

Minkowskian deviation: Aglob
ν [L] = Aν [L+λ4; 4]+ΔAν [L]

-10 -5 0 5 10

-0.2

-0.1

0

0.1

0.2

L

Δ¯�

(2)
1 [L]

�

glob;(2)
1 [L]

Thresholds in FAPT: Euclid vs Minkowski – p. 30



Quarks’08 @ Sergiev Posad, May 23–29, 2008

Application:

Pion FF in FAPT
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Factorizable part of pion FF at NLO
Scaled hard-scattering amplitude truncated at NLO and
evaluated at renormalization scale μ2

R = λRQ2 reads

Q2T NLO
H

(
x, y,Q2;μ2

F , λRQ2
)
= αs

(
λRQ2

)
t
(0)
H (x, y)

+
α2

s

(
λRQ2

)
4π

CF t
(1,F)
H,2

(
x, y;

μ2
F

Q2

)

+
α2

s

(
λRQ2

)
4π

{
b0 t

(1,β)
H (x, y;λR) + t

(FG)
H (x, y)

}
with shorthand notation

t
(1,F)
H,2

(
x, y;

μ2
F

Q2

)
= t

(0)
H (x, y)

[
2
(
3 + ln (x y )

)
ln

Q2

μ2
F

]
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Pion Distribution Amplitude

Leading twist 2 pion DA at normalization scale μ2
F is given

by

ϕπ(x,μ2
F) = 6x (1 − x)

[
1 + a2(μ

2
F)C

3/2
2 (2x − 1)

+a4(μ
2
F)C

3/2
4 (2x − 1) + . . .

]
All nonperturbative information encapsulated in
Gegenbauer coefficients an(μ2

0) enters to an(μ2
F) through

ERBL evolution.
To obtain factorized part of pion FF ⇒ convolute pion DA
with hard-scattering amplitude:

F Fact
π (Q2) = ϕπ(x,μ2

F)⊗
x

T NLO
H

(
x, y,Q2;μ2

F, λRQ2
)
⊗
y

ϕπ(y,μ2
F)
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Analyticity of Pion FF at NLO

Naive “analytization” [Stefanis, Schroers, Kim – PLB 449
(1999) 299; EPJC 18 (2000) 137][

Q2TH
(
x, y,Q2;μ2

F, λRQ2
)]

Nai-An =

A(2)
1 (λRQ2) t

(0)
H (x, y) +

(
A(2)

1 (λRQ2)
)2

4π
t
(1)
H

(
x, y;λR,

μ2
F

Q2

)
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Analyticity of Pion FF at NLO

Naive “analytization” [Stefanis, Schroers, Kim – PLB 449
(1999) 299; EPJC 18 (2000) 137][

Q2TH
(
x, y,Q2;μ2

F, λRQ2
)]

Nai-An =

A(2)
1 (λRQ2) t

(0)
H (x, y) +

(
A(2)

1 (λRQ2)
)2

4π
t
(1)
H

(
x, y;λR,

μ2
F

Q2

)

Maximal “analytization” [A. B., Passek, Schroers,
Stefanis – PRD 70 (2004) 033014][

Q2TH
(
x, y,Q2;μ2

F, λRQ2
)]

Max-An =

A(2)
1 (λRQ2) t

(0)
H (x, y) +

A(2)
2 (λRQ2)

4π
t
(1)
H

(
x, y;λR,

μ2
F

Q2

)
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Factorized Pion FF in Standard MS scheme

BLM , default, PMS, FAC

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5

Q2F Fact
π (Q2, μ2

R)

Q2 [GeV2]
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Factorized Pion FF in Naive APT

BLM , default, BLM, αv

10 20 30 40 50

0.1

0.2

0.3

0.4
[
Q2F Fact

π (Q2)
]
NaiAn

Q2 [GeV2]
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Factorized Pion FF in Maximal APT

BLM , default, BLM, αv

10 20 30 40 50

0.1

0.2

0.3

0.4
[
Q2F Fact

π (Q2)
]
MaxAn

Q2 [GeV2]
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Factorized Pion FF in FAPT(E)

If we put μ2
F = Q2 — then we obtain in pion FF convolutions

with ϕπ(x,Q2) which contains ERBL evolution factors

a2n(Q2) = a2n(μ2
0)

[
αs(Q

2)

αs(μ2
0)

]ν2n

with ν2n(Nf ) =
γ0(2n)

2b0(Nf )

Numerically ν2 = 0.62 − 0.72 and ν4 = 0.90 − 1.06.
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Factorized Pion FF in FAPT(E)

If we put μ2
F = Q2 — then we obtain in pion FF convolutions

with ϕπ(x,Q2) which contains ERBL evolution factors

a2n(Q2) = a2n(μ2
0)

[
αs(Q

2)

αs(μ2
0)

]ν2n

with ν2n(Nf ) =
γ0(2n)

2b0(Nf )

In T NLO
H

(
x, y,Q2

)
we have three types of contributions:

αs(Q
2) α2

s(Q
2) b0(Nf )α2

s(Q
2)
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Factorized Pion FF in FAPT(E)

Scheme of “analytization” of Nf -dependent quantity:

PT: b0(Nf )
[
α glob

s (Q2)
]ν(Nf )

S.D.: ρ glob
ν;b0

(σ)

AM AE

A glob
ν;b0

(s) A glob
ν;b0

(Q2)
D̂−→←−

R̂ = D̂−1

FAPT:
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Factorized Pion FF in FAPT(E)

APT, FAPT (μ2
F = Q2), FAPT (μ2

F ≈ 6GeV2)

0 10 20 30 40 50

0.1

0.2

0.3

0.4
[
Q2F Fact

π (Q2)
]
FAPT

Q2 [GeV2]
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Factorized Pion FF in FAPT(E)

Conclusion: In Euclidean problem taking
thresholds and Nf -dependence of coeffi-
cients into account generates tiny correction!

Main advantage: No problem with thresholds!

Pion FF automatically appears to be analytic function out of
Minkowski cut. A. B. [arXiv:0805.0829 (hep-ph)]
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Application:

Higgs decay in FAPT(M)

Thresholds in FAPT: Euclid vs Minkowski – p. 39



Quarks’08 @ Sergiev Posad, May 23–29, 2008

Higgs boson decay into bb̄-pair

This decay can be expressed in QCD by means of the
correlator of quark scalar currents JS(x) = : b̄(x)b(x):

Π(Q2) = (4π)2i

∫∫∫
dxeiqx〈0| T [ JS(x)JS(0) ] |0〉

in terms of discontinuity of its imaginary part

RS(s) = ImΠ(−s − iε)/(2π s) ,

so that

Γ(H → bb̄) =
GF

4
√

2π
MH m2

b(MH)RS(s = M2
H) .
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Standard PT analysis of RS

Direct multi-loop calculations are usually performed in the
Euclidean region for the corresponding Adler function DS,
where QCD perturbation theory works:

D̃S(Q2) = 3m2
b(Q

2)

[
1 +

∑∑∑
n>0

dn αn
s (Q2)

]
.
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Standard PT analysis of RS

Direct multi-loop calculations are usually performed in the
Euclidean region for the corresponding Adler function DS,
where QCD perturbation theory works:

D̃S(Q2) = 3m2
b(Q

2)

[
1 +

∑∑∑
n>0

dn αn
s (Q2)

]
.

Functions D and R can be related to each other via a
dispersion relation without any reference to perturbation
theory. This generates relations between rn and dn

R̃S(s) = 3m2
b(s)

[
1 +

∑∑∑
n>0

rn αn
s (s)

]
.
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Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integral
transformation of lnk(Q2/μ2) in dn:

A−2[L] = L2 −
π2

3
, A−3[L] = L

(
L2 − π2

)
, . . .
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Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integral
transformation of lnk(Q2/μ2) in dn .

Influence of these π2 terms can be substantial, see
[Baikov, Chetyrkin, and Kühn, PRL 96 (2006) 012003]

R̃S

3m2
b

= 1 + 5.6668as + 29.147a2
s + 41.758a3

s − 825.7a4
s
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Standard PT analysis of RS

Coefficients rn contain ‘π2 terms’ due to integral
transformation of lnk(Q2/μ2) in dn .

Influence of these π2 terms can be substantial, see
[Baikov, Chetyrkin, and Kühn, PRL 96 (2006) 012003]

R̃S

3m2
b

= 1 + 5.6668as + 29.147a2
s + 41.758a3

s − 825.7a4
s

= 1 + 0.2075 + 0.0391 + 0.0020 − 0.00148 .

Here as = αs(M
2
H)/π = 0.0366 corresponds to Higgs

boson mass MH = 120 GeV.
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2
[
αs(Q

2)
]ν0

[
1 + δ1 αs(Q

2)
]ν1

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8 GeV) and
ν0 = 1.04, ν1 = 1.86, and δ1 = c1b0/(4π).
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FAPT(M) analysis of RS

Running mass m(Q2) is described by the RG equation

m2(Q2) = m̂2
[
αs(Q

2)
]ν0

[
1 + δ1 αs(Q

2)
]ν1

with RG-invariant mass m̂2 (for b-quark m̂b ≈ 8 GeV) and
ν0 = 1.04, ν1 = 1.86, and δ1 = c1b0/(4π).
This gives us

D̃S(Q2)

3 m̂2
b

=
∑∑∑
n≥0

dn
αn+ν0

s (Q2)

πn

[
1 + δ1 αs(Q

2)
]ν1

.

We define analytic images of αn+ν0
s (Q2)

[
1 + δ1 αs(Q

2)
]ν1

in Minkowski region as Bn+ν0(s).

Thresholds in FAPT: Euclid vs Minkowski – p. 43



Quarks’08 @ Sergiev Posad, May 23–29, 2008

FAPT(M) analysis of RS

We define analytic images of αn+ν0
s (Q2)

[
1 + δ1 αs(Q

2)
]ν1

in Minkowski region as Bn+ν0(s).
Following the FAPT(M;5) procedure we obtain

R̃
(l)FAPT(M;5)
S (s) = 3m̂2

b

⎡⎣B
(l);glob
ν0 (s) +

l∑∑∑
n≥1

dn(5)
B

(l);glob
n+ν0

(s)

πn

⎤⎦
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FAPT(M) analysis of RS

We define analytic images of αn+ν0
s (Q2)

[
1 + δ1 αs(Q

2)
]ν1

in Minkowski region as Bn+ν0(s).
Following the FAPT(M;5) procedure we obtain

R̃
(l)FAPT(M;5)
S (s) = 3m̂2

b

⎡⎣B
(l);glob
ν0 (s) +

l∑∑∑
n≥1

dn(5)
B

(l);glob
n+ν0

(s)

πn

⎤⎦
Following the complete FAPT(M) procedure we obtain

R̃
(l)FAPT(M)
S (s) = 3m̂2

b

⎡⎣B
(l);glob
ν0 (s) +

l∑∑∑
n≥1

B
(l);glob
n+ν0;dn

(s)

πn

⎤⎦
with analytic images Bn+ν0;dn

(s) absorbing
Nf -dependence of dn coefficients.
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Graphics for RS in three loops
Illustration of R̃S(M2

H) calculation in different schemes:
= 3L FAPT(M;5), = 4L PT, = 1L FAPT(M)
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Graphics for RS in three loops
Illustration of R̃S(M2

H) calculation in different schemes:
= 3L FAPT(M), = 4L PT, = 1L FAPT(M)
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Conclusion: In Minkowskian problem taking Nf -
dependence of coefficients into account generates 14%
correction!
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Reminding about pion FF in FAPT(E)

Conclusion: In Euclidean problem taking
thresholds and Nf -dependence of coeffi-
cients into account generates tiny correction!
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Reminding about pion FF in FAPT(E)

Conclusion: In Euclidean problem taking
thresholds and Nf -dependence of coeffi-
cients into account generates tiny correction!

What is the reason for this asymmetry between
Minkowskian and Euclidean regions ?
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Reminding about pion FF in FAPT(E)

Conclusion: In Euclidean problem taking
thresholds and Nf -dependence of coeffi-
cients into account generates tiny correction!

What is the reason for this asymmetry between
Minkowskian and Euclidean regions ?

Answer: Large dependence of coefficients on Nf in the
problem considered in Minkowski region.

Next slide: Euclidean analog of RS with the same
coefficients dn(Nf ) demonstrates reduction of the same
order.
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Graphics for DS in three loops

Compare analogous quantities in Euclidean domain:
= 3L FAPT(M), = 3L FAPT(M;5)
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Conclusion: In Euclidean problem taking Nf -dependence
of coefficients into account generates 20% correction!
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Concluding Remarks

Implementation of analyticity at amplitude level ⇒
Extension of APT to FAPT(E) and FAPT(M) ;
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Concluding Remarks

Implementation of analyticity at amplitude level ⇒
Extension of APT to FAPT(E) and FAPT(M) ;

Rules to apply FAPT at 2- and 3-loop level formulated;

Convergence of perturbative expansion significantly
improved in FAPT as compared with PT;

Rules to account for heavy-quark thresholds in FAPT
formulated;

Application to pion FF: Minimal sensitivity to both
renormalization and factorization scale setting +
Threshold problem resolved.

Application to decay H0 → bb̄: Taking into account
t-quark effects in virtual loops via FAPT(M) reduces
the result by 14%.
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Sergiev Posad photos
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