Classical Scalar Field Potential in SM

Andrej Arbuzov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

in collaboration with L.A. Glinka and V.N. Pervushin

Talk at Quarks'08 Seminar, Sergiev Posad, Russia, 23-29 May, 2008.

Outline

Motivation

- Vector boson mass generation mechanism
- Conditions on the potential form and parameters
- Special choices of the potential
- Initial data mechanism of symmetry breaking
- Problems and outlook

The Standard Model (SM) is a very successful physical theory. But for many reasons we suppose that is only an effective theory appropriate for a certain energy range

- The Standard Model (SM) is a very successful physical theory. But for many reasons we suppose that is only an effective theory appropriate for a certain energy range
- Very soon at LHC we hope to access both the limit of SM applicability and the mechanism of EW symmetry breaking

- The Standard Model (SM) is a very successful physical theory. But for many reasons we suppose that is only an effective theory appropriate for a certain energy range
- ► Very soon at LHC we hope to access both the limit of SM applicability and the mechanism of EW symmetry breaking
- ► The Higgs-Kibble mechanism gives masses for gauge bosons and certain problems for the theory: tachyon behavior, monopole solutions, non-zero imaginary part of the effective potential, large Higgs self-coupling, naturalness or fine tuning problem *etc*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The Standard Model (SM) is a very successful physical theory. But for many reasons we suppose that is only an effective theory appropriate for a certain energy range
- ► Very soon at LHC we hope to access both the limit of SM applicability and the mechanism of EW symmetry breaking
- ► The Higgs-Kibble mechanism gives masses for gauge bosons and certain problems for the theory: tachyon behavior, monopole solutions, non-zero imaginary part of the effective potential, large Higgs self-coupling, naturalness or fine tuning problem *etc*.
- The SM Higgs potential looks to be an artificial product of the correspondence principle to the Landau-Ginzburg potential in the superconductivity theory

- The Standard Model (SM) is a very successful physical theory. But for many reasons we suppose that is only an effective theory appropriate for a certain energy range
- ► Very soon at LHC we hope to access both the limit of SM applicability and the mechanism of EW symmetry breaking
- ► The Higgs-Kibble mechanism gives masses for gauge bosons and certain problems for the theory: tachyon behavior, monopole solutions, non-zero imaginary part of the effective potential, large Higgs self-coupling, naturalness or fine tuning problem *etc.*
- The SM Higgs potential looks to be an artificial product of the correspondence principle to the Landau-Ginzburg potential in the superconductivity theory
- Can we take a different form for the potential keeping the SM EW sector unchanged?

Let's consider interaction of a U(1) abelian field A with a complex two-component scalar field Φ :

$$\mathcal{L} = \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - V(\Phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + ig \left(\Phi^{\dagger} \partial_{\mu} \Phi - (\partial_{\mu} \Phi^{\dagger}) \Phi \right) A^{\mu} + g^{2} \Phi^{\dagger} \Phi A_{\mu} A^{\mu}$$

The Lagrangian is U(1)-invariant if

$$V(\Phi) \equiv V(|\Phi|) \quad \Leftarrow \quad V(\Phi) \equiv V(\Phi^{\dagger}\Phi)$$

In polar variables reflecting the gauge symmetry,

$$\Phi(x) \equiv \sigma(x)e^{i\theta(x)}, \qquad \Phi^{\dagger}(x) \equiv \sigma(x)e^{-i\theta(x)},$$

the Lagrangian takes the form

$$\mathcal{L} = \partial_\mu \sigma \partial^\mu \sigma - V(\Phi) + g^2 \sigma^2 (A_\mu + rac{1}{g} \partial_\mu \theta) (A^\mu + rac{1}{g} \partial^\mu \theta) - rac{1}{4} F_{\mu
u} F^{\mu
u}$$

白マ くほう くほう

To generate a mass term for the gauge boson we assume that there is a non-zero vacuum expectation value

$$\langle 0|\sigma|0\rangle\equiv\sigma_0=rac{\eta}{\sqrt{2}}
eq 0$$
 so that $\sigma(x)=rac{\eta+h(x)}{\sqrt{2}}$

 σ_0 is the zeroth harmonic of the radial degree of freedom of the scalar field:

$$\frac{1}{V_0} \int_{V_0} d^3 x \, \sigma(x) = \sigma_0, \qquad \frac{1}{V_0} \int_{V_0} d^3 x \, h(x) = 0$$

Fixing the gauge of the vector field by

$$\begin{aligned} A_{\mu}(x) &\to B_{\mu}(x) = A_{\mu}(x) + \frac{1}{g} \partial_{\mu} \theta(x), & \text{we get} \\ \mathcal{L} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(\sigma(x)) + \frac{1}{2} g^2 \eta^2 B_{\mu} B^{\mu} + g^2 \eta h B_{\mu} B^{\mu} \\ &+ \frac{1}{2} g^2 h^2 B_{\mu} B^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \end{aligned}$$

That is the Higgs-Kibble mechanism of gauge boson mass generation. Note that

・日・ ・ヨ・ ・ヨ・

-2

That is the Higgs-Kibble mechanism of gauge boson mass generation. Note that

► there is no any mass-like term for θ(x) without any reference to the Goldstone theorem

同 と く ヨ と く ヨ と …

That is the Higgs-Kibble mechanism of gauge boson mass generation. Note that

- ► there is no any mass-like term for θ(x) without any reference to the Goldstone theorem
- in polar variables gauge fixing can be avoided without any change in the phenomenology, see [1]=[N. Chernodub, L. Faddeev, A. Niemi, arXiv:0804.1544]

向下 イヨト イヨト

That is the Higgs-Kibble mechanism of gauge boson mass generation. Note that

- ► there is no any mass-like term for θ(x) without any reference to the Goldstone theorem
- in polar variables gauge fixing can be avoided without any change in the phenomenology, see [1]=[N. Chernodub, L. Faddeev, A. Niemi, arXiv:0804.1544]
- ▶ fermion masses in these variables are generated in the standard way with help of Yukawa couplings and $\eta \neq 0$

・日・ ・ ヨ・ ・ ヨ・

That is the Higgs-Kibble mechanism of gauge boson mass generation. Note that

- ► there is no any mass-like term for θ(x) without any reference to the Goldstone theorem
- in polar variables gauge fixing can be avoided without any change in the phenomenology, see [1]=[N. Chernodub, L. Faddeev, A. Niemi, arXiv:0804.1544]
- ▶ fermion masses in these variables are generated in the standard way with help of Yukawa couplings and $\eta \neq 0$
- ► SU(2) × U(1) case is evaluated in polar variables in the same manner, see e.g. [1]

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

That is the Higgs-Kibble mechanism of gauge boson mass generation. Note that

- ► there is no any mass-like term for θ(x) without any reference to the Goldstone theorem
- in polar variables gauge fixing can be avoided without any change in the phenomenology, see [1]=[N. Chernodub, L. Faddeev, A. Niemi, arXiv:0804.1544]
- ▶ fermion masses in these variables are generated in the standard way with help of Yukawa couplings and $\eta \neq 0$
- ► SU(2) × U(1) case is evaluated in polar variables in the same manner, see e.g. [1]
- the potential is not yet given explicitly, and certain additional conditions on it to be applied

(4回) (注) (注) (注) (三)

Conditions on the potential

For the symmetry reason

$$V(\Phi) = V(|\Phi|) = V(\sigma) \tag{1}$$

Universe energy density

 $V(\sigma_0) + V_{\text{eff}}(\sigma_0) = 0 \longrightarrow V(\sigma_0) = 0, \qquad V_{\text{eff}}(\sigma_0) = 0$ (2)

Minimum of the classical potential

$$\frac{\mathrm{d}V(\sigma)}{\mathrm{d}\sigma}\Big|_{\sigma=\sigma_0} = 0, \qquad \frac{\mathrm{d}^2 V(\sigma)}{\mathrm{d}\sigma^2}\Big|_{\sigma=\sigma_0} \le 0 \tag{3}$$

Renormalizablity, stability, minimality etc.

$$V(\sigma) = c_0 + c_1\sigma + c_2\sigma^2 + c_3\sigma^3 + c_4\sigma^4, \qquad c_4 \ge 0$$
(4)

白 と く ヨ と く ヨ と …

► The standard choice

$$V_{\rm std}(\Phi) = \lambda \left(\sigma^2 - \frac{\eta^2}{2}\right)^2 = \lambda \eta^2 h^2 + \lambda \eta h^3 + \frac{\lambda}{4} h^4$$

certainly satisfies the listed conditions; one free parameter $\lambda>$ 0, two local minima $\sigma=\pm\sigma_0$

同 と く ヨ と く ヨ と

The standard choice

$$V_{
m std}(\Phi) = \lambda \left(\sigma^2 - rac{\eta^2}{2}
ight)^2 = \lambda \eta^2 h^2 + \lambda \eta h^3 + rac{\lambda}{4} h^4$$

certainly satisfies the listed conditions; one free parameter $\lambda>0$, two local minima $\sigma=\pm\sigma_0$

Sub-class of concave potentials with a single global minimum

$$V_{l}(\sigma) = m_{h}^{2}(\sigma - \sigma_{0})^{2} + \lambda(\sigma - \sigma_{0})^{4} = \frac{m_{h}^{2}}{2}h^{2} + \frac{\lambda}{4}h^{4}$$

with two free parameters m_h and $\lambda > 0$; no triple Higgs couplings at the tree level. EW sector, including interactions of Higgs with vector bosons and fermions is exactly the same as in SM

Potential types (II)

► Let's drop the Higgs self-interaction:

$$V_{II}(\sigma) = m_h^2 (\sigma - \sigma_0)^2 = \frac{m_h^2}{2} h^2$$

one free parameter m_h . Only gauge and Yukawa interactions in the theory. Remind that Φ^4 theory to remain perturbative at all scales should be trivial, i.e. $\lambda = 0$

Potential types (II)

► Let's drop the Higgs self-interaction:

$$V_{II}(\sigma) = m_h^2 (\sigma - \sigma_0)^2 = rac{m_h^2}{2} h^2$$

one free parameter m_h . Only gauge and Yukawa interactions in the theory. Remind that Φ^4 theory to remain perturbative at all scales should be trivial, i.e. $\lambda = 0$

Higgs mass term can be dropped as well

$$V_{III}(\sigma) = \lambda (\sigma - \sigma_0)^4 = rac{\lambda}{4} h^4$$

and we start with a nice conformal symmetry. The observable Higgs mass should be provided by another mechanism

Potential types (II)

► Let's drop the Higgs self-interaction:

$$V_{II}(\sigma) = m_h^2 (\sigma - \sigma_0)^2 = \frac{m_h^2}{2} h^2$$

one free parameter m_h . Only gauge and Yukawa interactions in the theory. Remind that Φ^4 theory to remain perturbative at all scales should be trivial, i.e. $\lambda = 0$

Higgs mass term can be dropped as well

$$V_{III}(\sigma) = \lambda (\sigma - \sigma_0)^4 = rac{\lambda}{4} h^4$$

and we start with a nice conformal symmetry. The observable Higgs mass should be provided by another mechanism

• Neither m_h nor λ is required to get the EW boson masses

 $V_{IV}(\sigma) \equiv 0$

it is the minimal choice

• Initial Data (ID) should be considered as an ingredient of a physical model. For a model with a local gauge symmetry ID is a must because of the second Nöther theorem.

• Physical vacuum comes to our theoretical constructions from aside as a kind of ID

• All scalar objects (Higgs, condensates etc.) in the theory can mix with vacuum. And can means do

• In order to construct a *physical* theory, i.e. the one describing *observables*, we have to extract all zeroth modes and put into the *physical* vacuum. This statement is nothing else but Einstein's cosmological principle (1917).

白 ト イヨト イヨト

Let's consider a part of a conformal symmetric Lagrangian describing scalar field σ and its interactions with fermions (s) and vector bosons (v)

$$\mathcal{L}_{\rm Higgs} = \partial_{\mu}\sigma\partial^{\mu}\sigma - \sigma\sum_{s}f_{s}\bar{s}s + \frac{\sigma^{2}}{4}\sum_{\rm v}g_{\rm v}^{2}V^{2} - \lambda\sigma^{4}$$

Following Kirzhnits and Linde we can *try* to apply the cosmological principle and average our scalar components over a large enough volume V_0 :

$$\langle \sigma \rangle \equiv \frac{1}{V_0} \int d^3 x \sigma, \quad \langle \mathbf{A} \rangle \equiv \frac{1}{V_0} \int d^3 x \sum_s f_s \bar{s}s, \quad \langle \mathbf{B} \rangle \equiv \frac{1}{V_0} \int d^3 x \frac{1}{4} \sum_v g_v^2 V^2$$

Again we shift the scalar field $\sigma = \langle \sigma \rangle + h/\sqrt{2}$

Symmetry breaking by ID (III)

The Lagrangian takes the form

$$\mathcal{L}_{\mathrm{Higgs}} = \partial_0 \langle \sigma \rangle \partial_0 \langle \sigma \rangle - \mathbf{V}_0(\langle \sigma \rangle) + \frac{1}{2} \partial_\mu h \partial^\mu h - h^2 \frac{m_h^2}{2} - h^3 \lambda \sqrt{2} \langle \sigma \rangle + \dots$$

where

$$\begin{array}{lll} \mathbf{V}_0(\langle \sigma \rangle) &=& \langle \sigma \rangle \langle \mathbf{A} \rangle - \langle \sigma \rangle^2 \langle \mathbf{B} \rangle + \lambda \langle \sigma \rangle^4 \\ m_h^2 &=& 6\lambda \langle \sigma \rangle^2 - \langle \mathbf{B} \rangle \end{array}$$

Assuming that $V_0(\langle \sigma \rangle) = 0$ and $\partial V_0(\langle \sigma \rangle) / \partial \langle \sigma \rangle = 0$ we get a set of linear equations for the condensates giving

$$m_h^2 = \langle \mathbf{B} \rangle = 3\lambda \langle \sigma \rangle^2, \qquad \langle \mathbf{A} \rangle = 2\lambda \langle \sigma \rangle^3$$

Non-zero vacuum expectation values can be interpreted as non-trivial initial data.

→ 同 → → 目 → → 目 →

 Different classical potentials lead to (not necessarily) different quantum theories to be studied

- Different classical potentials lead to (not necessarily) different quantum theories to be studied
- If the classical potential is not unique, we need a steering principle to choose one (conformal symmetry, minimality, whatever)

- Different classical potentials lead to (not necessarily) different quantum theories to be studied
- If the classical potential is not unique, we need a steering principle to choose one (conformal symmetry, minimality, whatever)
- ► In any case, if Higgs gave masses to all other particles, who gave m_h? In other words, is it possible to look for the origin of dimensional parameters within the SM?

- Different classical potentials lead to (not necessarily) different quantum theories to be studied
- If the classical potential is not unique, we need a steering principle to choose one (conformal symmetry, minimality, whatever)
- ► In any case, if Higgs gave masses to all other particles, who gave m_h? In other words, is it possible to look for the origin of dimensional parameters within the SM?
- Choosing one of the alternative classical potentials discussed above does not automatically solve difficulties of the SM

・回 と く ヨ と く ヨ と …