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Abstract

Theoretically motivated and experimentally confirmed smallness of the penguin ampli-
tude in B → ππ decays allows to calculate the value of the unitarity triangle angle α(φ2)
with good accuracy. The relatively large branching ratio of the decay into π0π0 is explained
by the large value of FSI phase difference between decay amplitudes with I = 0 and I = 2.

I am very grateful to the QUARKS 2006 organizers for stimulating and creative atmosphere.
This talk is based on paper [1].

1 Introduction

It was found long ago that the experimental data on branching ratios and CP asymmetries of
B → ππ decays allow to determine the value of the unitarity triangle angle α with essentially
no hadronic input using isospin invariance of strong interactions only [2]. However, large ex-
perimental uncertainties in particular in the values of the direct CP asymmetries lead to poor
accuracy in the value of α determined in this way.

If the penguin amplitudes were negligible in charmless strangeless B decays we would deter-
mine the value of unitarity triangle angle α from CP asymmetry S+− extracted from B → π+π−

decay data with essentially no theoretical uncertainties. As it was found in paper [3] neglect-
ing penguin amplitudes one gets the values of angle α from CP asymmetries in Bd decays to
π+π−, ρ+ρ− and π±ρ∓ consistent with the global fit of unitarity triangle. Since the penguin
contributions to these decays are different [4] the fact that the numerical values of α are close
to each other testifies in favor of smallness of penguin amplitudes. Small penguin corrections
to these decay amplitudes were accounted for in [5] where the hadronic amplitudes were found
from the quark amplitudes with the help of factorization. However, it is well known that the
branching ratio of Bd(B̄d) → π0π0 decay predicted by factorization appears to be more than
10 times smaller than the experimental data. The way out of this contradiction could be large
FSI phases in B → ππ decays. The validity of this theoretical ingredient will be checked by the
more accurate experimental data.

Though the penguin contribution is relatively small compared to tree amplitudes and can be
neglected in the first approximation in the decay probabilities and in the CPV parameters S it
determines the CPV parameters C and should be accounted for in the analysis of the complete
set of observables.

The charmless strangeless B decays are described by b → uūd quark transition. The ef-
fective Hamiltonian responsible for this transition consists of two parts: the tree level weak
amplitude (operators O1 and O2 in standard notations) dressed by gluons and the gluon pen-
guin amplitudes (operators O3−O6); the parametrically small electroweak penguins are omitted.
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The gluon penguins being very important in ∆S = 1 strange particles nonleptonic weak de-
cays are almost negligible in the probabilities of ∆B = 1, ∆S = 0 transitions. The reason
is twofold: firstly, Wilson coefficients are much smaller in case of B decays because infrared
cutoff is at µ ∼ mb instead of µ ∼ ΛQCD; secondly, the enhancement factor originated from
the right-handed currents m2

π/ms(mu + md) ∼ 10 for strange particles decays is replaced by
m2

π/mb(mu + md) ∼ 1/3 for beauty hadrons. That is why after presenting the general phe-
nomenological expressions for the amplitudes we will start our analysis of B → ππ decays in
Section 2 by the sequestered Hamiltonian which does not contain penguin contributions 1. From
the experimental data on Bd(B̄d) → π+π−, π0π0 and Bu → π+π0 branching ratios we will ex-
tract the moduli of the amplitudes of the decays into ππ states with isospin zero A0 and two A2

and find the final state interaction (FSI) phase shift δ ≡ δ2 − δ0 between these two amplitudes.
The value of the unitarity triangle angle α in this approximation is directly determined by CP
asymmetry S+−.

While the absolute values of the amplitudes A0 and A2 are reproduced with good accuracy by
the factorization formulas, the FSI phase shift appears to be unexpectedly large, δ = −(53o±7o).
This is the reason why B → π0π0 decay probability is significantly enhanced in comparison with
the naive factorization approach, where one neglects δ. In Section 3 we consider the theoretical
estimates of δ and show how FSI can enhance B width to neutral pions not enhancing that to
neutral ρ mesons in accordance with experimentally observed suppression of B → ρ0ρ0 decay
width.

In Section 4 the penguin contributions are considered; the corrections to the numerical
values of A0 and δ due to gluon penguin amplitudes are determined, as well as the correction to
the unitarity triangle angle α and the values of CP asymmetries C+− and C00. In Conclusions
the pattern of the B → ππ decay amplitudes emerging from the experimental data is presented.

2 Decay amplitudes from branching ratios

The quark Hamiltonian responsible for B → ππ decays has the parts with ∆I = 1/2 and
∆I = 3/2 which produce π-mesons in the states with I = 0 and I = 2 correspondingly. QCD
penguins having ∆I = 1/2 contribute only to the I = 0 amplitude. Taking into account the
corresponding Clebsch–Gordan coefficients and separating the penguin contribution (P ) with
the CKM phase different from that of A0 we obtain:
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where Vik are CKM matrix elements and the penguin amplitude with an intermediate c-quark
multiplied by VubV

∗
ud + VcbV

∗
cd + VtbV

∗
td = 0 is subtracted from the penguin amplitudes with

1Let us stress that while from the smallness of B → π0π0 decay width it would follow that penguins are small,
the opposite statement is not correct: the relatively large width to neutral pions does not necessary mean that
penguins are large.
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intermediate u-, c- and t-quarks (the so-called t-convention). To check if the factorization
works in B → ππ decays it is convenient to introduce f+(0) - the value of the formfactor
which enters the amplitude of semileptonic Bd → πlν decay at zero momentum transfer in
Eqs. (1)-(3). γ and β are the angles of the unitarity triangle; δ2 and δ0 are FSI phases of the
tree amplitudes with I = 2 and I = 0 (below we will use δ ≡ δ2 − δ0), δp originates from the
imaginary part of the penguin loop with c-quark propagating in it [6] while δ̃0 is long distance
FSI phase of the penguin amplitude. δ̃0 in general is different from δ0; in Section 4 we will argue
that ρρ intermediate state generate large value of δ0 while its contribution into δ̃0 is smaller:
(pseudo)scalar part of penguin operator do not produce ρ mesons.

The charge conjugate amplitudes are obtained by the same formulas with substitution β, γ →
−β,−γ.

Now we have all the necessary formulas and neglecting the penguin contribution we are able
to determine A0, A2, δ and the value of the unitarity triangle angle α from the experimental
data on B+−, B00, B+0 and S+−, which are presented in Table 1. By definition:

B+− ≡ 1/2[Br(Bd → π+π−) + Br(B̄d → π+π−)] ,

B00 ≡ 1/2[Br(Bd → π0π0) + Br(B̄d → π0π0)] ,

B+0 = Br(Bu → π+π0) = Br(B̄u → π−π0) ,

the last equality holds as far as the electroweak penguins are neglected.

Table 1. Experimental data on B → ππ decays. Branching ratios are in units of 10−6.

BABAR Belle Heavy Flavor
Averaging Group [7]

B+− 5.5 ± 0.5 4.4 ± 0.7 5.0 ± 0.4
B00 1.17 ± 0.33 2.3 ± 0.5 1.45 ± 0.29
B+0 5.8 ± 0.7 5.0 ± 1.3 5.5 ± 0.6

S+− −0.30 ± 0.17 −0.67 ± 0.16 −0.50 ± 0.12
C+− −0.09 ± 0.15 −0.56 ± 0.13 −0.37 ± 0.10
C00 −0.12 ± 0.56 −0.44 ± 0.56 −0.28 ± 0.39

To extract the product A2f+(0) from B+0 we will use the value of |Vub| obtained from
the general fit of the Wolfenstein parameters of CKM matrix (CKM fitter, summer 2005):
A = 0.825 ± 0.019 , λ = 0.226 ± 0.001 , ρ̄ = 0.207 ± 0.040 , η̄ = 0.340 ± 0.023 :

|Vub| = (3.90 ± 0.10) · 10−3 . (4)

From (3) and the experimental data on B+0 from the last column of Table 1 we readily get:

A2f+(0) = 0.35 ± 0.02 . (5)

In order to understand if the factorization works in Bu → π+π0 decay we should determine
the value of f+(0). We find it using the data on B → πlν decay from [8]:

f+(0) = 0.22 ± 0.02 , (6)

thus getting:
A2 = 1.60 ± 0.20 , (7)

which is not far from the result of factorization:

Af
2 =

8

3
√

3
(c1 + c2) ≡

2√
3
(a1 + a2) = 1.35 . (8)
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We come to the same conclusion as the authors of paper [9]: A2 is estimated correctly by
factorization. Neglecting the penguin contribution we are able to extract the values of A0 and
FSI phases difference δ from (1)-(3) and the experimental data for B+−, B00 and B+0 from the
last column of Table 1. In this way we obtain:

A0 = 1.53 ± 0.23 , (9)

which should be compared with the result of factorization:

Af
0 =

√
2

3
√

3
(5c1 − c2) = 1.54 . (10)

In this way we come to the conclusion that factorization works well for the moduli of both
decay amplitudes.

For the phase difference δ ≡ δ2 − δ0 we get:

cos δ =
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3

4
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3

τ0
τ+

B+0
√

τ0
τ+

B+0

√

B+− + B00 − 2
3

τ0
τ+

B+0

, (11)

δ = ±(53o ± 7o) , (12)

where τ0/τ+ ≡ τ(Bd)/τ(Bu) = 0.92 is substituted. This is the place where the factorization
which predicts the negligible FSI phases fails.

In Section 3 we will present a model in which the pattern of B → ππ amplitudes obtained
above is realized.

Let us turn to the bottom part of Table 1. Since we neglect penguins the experimental value
of S+− is directly related to the unitarity triangle angle α:

sin 2αT = S+− , (13)

αT
BABAR = 99o ± 5o , αT

Belle = 111o ± 6o , αT
average = 105o ± 4o ,

where index “T” stands for “tree” stressing that penguins are neglected (three other values of
α are not compatible with the Standard Model).

3 FSI phases

There are many theoretical papers on the final state interaction (FSI) in the heavy-meson
decays. Not going into details let us stress that complete and reliable calculations for B-decays
are not performed yet.

We will use the Feynman diagrams approach taking only the low mass intermediate states
X,Y into account. This approach coincides with the use of the unitarity condition only if
the transitions ππ → XY are described by the real amplitudes. This is certainly not true for
elastic ππ-scattering, where the amplitude at large energies is predominantly imaginary. In this
formalism the resulting decay matrix elements are:

M I
ππ = M

(0)I
XY

(

δπXδπY + iT J=0
XY →ππ

)

, (14)

where M
(0)I
XY are the decay matrix elements without FSI and T J=0

XY →ππ is the J = 0 partial
wave amplitude of the process XY → ππ2. At very high energies the amplitudes of ππ elastic
scattering are imaginary and T J=0

XY →ππ do not decrease with energy (mass of a heavy meson).
Thus this contribution, according to (14) does not change the phase of the matrix element,

2We use the standard normalization with T J = SJ
−1

2i
.
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but only changes its modulus. The extra phases come from the real parts of the amplitudes,
which in Regge model are due to the secondary exchanges (R ≡ ρ, f, ...), which decrease with
energy as 1/s1−αR(0) ≈ 1/

√
s. The contribution of the pion exchange in the t-channel, which is

dominant in the process ρρ → ππ3 decreases even faster (as 1/s). However Br(B → ρ+ρ−) is
substantially larger than Br(B → π+π−) and ρρ intermediate state is important in (14). This
is especially true for color suppressed B → πoπo decay, where the chain B → ρ+ρ− → πoπo is
enhanced. On the contrary ππ contribution in B → ρρ decay is relatively suppressed. Using
Regge analysis of ππ scattering [10] and π-exchange model for ρρ → ππ transitions, we obtain
phases due to final state interactions for ππ final state δ2 ≈ −120 and δ0 ≈ 18o. Thus the phase
difference δ ≈ −30o is generated by intermediate ρρ and ππ states 4.

Sign of δ is negative, just as in the case of K → ππ decays. In this way in the numerical
estimates we will use negative value of δ from (12):

δ ≈ −(50 ± 7)o , δ0 = 30o , δ2 = −20o . (15)

As far as Br(B → ρ+ρ−) is much larger than Br(B → π+π−) because of enhancement in
tree amplitudes but not in penguin amplitudes (contribution of penguins in B → ρρ amplitude
is small) we should expect δ̃0 to be substantially smaller than δ0.

Note that in this model there is little change in moduli of amplitudes in comparison with
factorization predictions.

For B → ρρ decays the same model gives ≈ −5o for I = 2 and +5o for I = 0 amplitudes,
resulting in a small phase difference ≈ 10o, consistent with experimentally observed smallness
of Br(B → ρ0ρ0) in comparison with Br(B → ρ+ρ−, ρ+ρ0).

Thus the lowest mass hadronic intermediate states may produce the phases which are con-
sistent with the data on B → ππ and B → ρρ decays. There are many high-mass states as
well, and they can lead to additional phases (the inclusion of πa1 intermediate state makes
δ ≈ −40o).

4 Taking penguins into account

Let us analyse to what changes of the parameters introduced and calculated in Section 2 pen-
guins lead. Since QCD penguins contribute only to I = 0 amplitude the value of A2 extracted
from B+0 remains the same, see (7). The requirement that the numerical values of B+− and
B00 are not shifted when penguins are taken into account leads to the following shifts of the
amplitude A0 and phase difference δ:

A0 → A0 + Ã0 , δ → δ + δ̃ , (16)
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√

6
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where only the terms linear in P are taken into account. For numerical estimates we take:
∣

∣

∣

∣

Vtd

Vub

∣

∣

∣

∣

=
sin γ

sinβ
≈ 2.3 ± 0.2 , (19)

where β = 22o, γ = 60o ± 10o. In the factorization approach we have5 :

P f = −a4 −
2m2

π

(mu + md)mb
a6 = 0.06 , (20)

3In B-decays transverse polarizations of ρ-mesons are small that is why a2 and ω exchanges in ρρ → ππ

amplitudes are suppressed.
4An accuracy of this number is about 15o.
5Note that the definition of P used in the present paper differs in sign from that in [5].
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and shifts of A0 and δ are small:

−0.12 < Ã0 < 0.12 , −4o < δ̃ < 4o (21)

for

A0 = 1.5 , −1 < cos(δp + δ̃0 − δ0) , sin(δp + δ̃0 − δ0) < 1 and 70o < α < 110o . (22)

In particular even if the penguin contribution is underestimated by factor 2, the statement that
δ + δ̃ is large still holds6 (note that α can be closer to 90o).

The following two equations for direct CP asymmetries determine P and δp + δ̃0 − δ0 (as far
as A0, A2 and δ = δ2 − δ0 are known):

C+− = − P̃√
3

sinα[
√

2A0 sin(δ0 − δ̃0 − δp) + A2 sin(δ2 − δ̃0 − δp)]/

/ [
A2

0

6
+
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where

P̃ ≡
∣

∣

∣

∣

V ∗
tdVtb

VubV
∗
ud

∣

∣

∣

∣

P ≈ 2.3P . (25)

Three last terms in denominators of (23) and (24) lead to less than 10% variations of the
numerical values of C+− and C00 for P̃ < 0.3. Neglecting them we get:

sin(δ2 − δ̃0 − δp)

sin(δ0 − δ̃0 − δp)
=

1 − 0.57 C00

C+−

1.4 + 0.41 C00

C+−

, (26)

where the numerical values for A2, A0 and δ from (7), (9) and (12) correspondingly were used.
From the central values in the last column in Table 1 of C+− and C00 we get:

δ0 − δ̃0 − δp = 70o , P = 0.11 . (27)

The numerical value of P is two times larger than the factorization estimate of it presented
in (20), while δ0 − δ̃0 − δp largely deviates from 30o which is our estimate of δ0, while δ̃0 should
be considerably smaller as well as δp the latter being close to 30o only for very asymmetric
configurations of quarks in π mesons and is smaller otherwise [6]. If the experimental accuracy
of Cik were good we would be able to use the results obtained for determination of the value of
the angle α from S+−, realizing in this way Gronau-London approach [2].

However the experimental uncertainty in C00 is very big, while the measurements of C+− by
Belle and BABAR contradict each other. So let us look which values of the direct asymmetries
follow from our formulas.

6Indication of factor 2 underestimate follows from the probability of b → s penguin dominated B+
→ K0π+

decay.
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Denominator of the expression for C+− is close to one and in the expression in brackets in
nominator first term dominates. Neglecting δ̃0 and δp and taking δ0 = 30o, δ2 = −20o we get
C+− = −0.04 for the value of penguin amplitude obtained in the factorization approach, (20).
We reproduce BABAR central value of C+− if we suppose that factorization underestimate
penguin amplitude by factor 2; however in order to reproduce Belle number we should accept
that factorization is wrong by factor 10, which looks highly improbable.

What to do if C+− appeared to be equal to the average of the present day Belle and BABAR
results C+− ≈ −0.3? One possibility is to suppose that δ2− δ̃0−δP ≈ 0, while δ0− δ̃0−δP ≈ 50o

and to look for FSI mechanism which provides such a result.7

C00 is also negative while its absolute value is much larger than C+−: denominator is about
.55 while in nominator both terms are negative.

The requirement that the value of CP asymmetry S+− is not changed when penguins are
taken into account leads to the following shift of the value of the unitarity triangle angle α:

α = αT + α̃ , (28)

α̃ = − P̃

2
√

3
sinα[

√
2A0 cos(δ0 − δ̃0 − δP ) + A2 cos(δ2 − δ̃0 − δP )] . (29)

Substituting the numerical values of A2 from (7), A0 from (9), P̃ from (25) and substituting
sinα by one and both cos by 0.9 we get:

α̃ ≈ −2.3P ≈ −7o, (30)

where the result of the matrix element of the penguin operator calculation in factorization
approximation (20) is used. We observe that our approach is at least selfconsistent: the shift
of α due to penguin contribution is small. For the BABAR value of S+− we obtain:

αBABAR = αT
BABAR + α̃ = 92o ± 5o . (31)

In the case of the averaged experimental values we get:

αaverage = αT
average + α̃ = 98o ± 4o . (32)

Theoretical uncertainty of the value of α can be estimated in the following way. Let us
suppose that the accuracy of the factorization calculation of the penguin amplitude is 100%.
Then:

α̃ = −7o ± 7o
theor , (33)

αaverage = 98o ± 4o
exp ± 7o

theor , (34)

while BABAR value is smaller:

αBABAR = 92o ± 5o
exp ± 7o

theor . (35)

Better theoretical accuracy of α follows from B → ρ+ρ− decays, where penguin contribution
is two times smaller. Since FSI phases are small in these decays, results of the paper [5] are
directly applicable:

αρρ = 92o ± 7o
exp ± 4o

theor , (36)

where we take the WHOLE penguine contribution as an estimate of the theoretical uncertainty.
The model independent isospin analysis of B → ρρ decays performed by BABAR gives [13]:

αρρ
BABAR = 100o ± 13o , (37)

7Let us note that in [11] argument in favor of C+− ≈ 0.3 is presented, which is based on the comparison of
the direct CP-violation in B(B̄) → π+π− and B(B̄) → K+π−(K−π+) decays (see also [12]).
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while the analogous analysis performed by Belle gives [14] :

αρρ
Belle = 87o ± 17o . (38)

Finally, the global CKM fit results are[15, 16]:

αCKMfitter = 97o ± 5o , αUTfit = 95o ± 5o . (39)

This work was partly supported by grants RFBR 05-02-17203 and NSh-5603.2006.2.
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