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Abstract

I discuss rare meson decays K+ → π−`+`′+ and D+ → K−`+`′+ (`, `′ = e, µ) in a
supersymmetric extension of the Standard Model with explicit breaking of R-parity. My
emphasis is put on trilinear R-parity breaking terms, because in this work, I assume that
the bilinear terms are absent at tree level. They will be generated by quantum corrections,
but it is expected that the phenomenology will be still dominated by the tree-level trilinear
terms. Estimates of the branching ratios for these decays are presented.

In the Standard Model (SM), the lepton L and baryon B number conservation is protected to
all orders of perturbation theory due to the accidental U(1)L ×U(1)B symmetry existing at the
level of renormalizable operators. But for many extensions of the SM this symmetry is absent
and the L and B violating processes are not forbidden. The well known mechanism of lepton
number (LN) violation is based on the mixing of massive Majorana neutrinos predicted by
various Grand unified theories (GUTs) [1]. The Majorana mass term violates LN by ∆L = ±2
[2] and can lead to a large number of LN violating processes. Among them, the most sensitive
to the LN violation neutrinoless double beta decay (A,Z) → (A,Z + 2) + e− + e− (for a recent
review, see [3]), rare meson decays (see, e.g., [4, 5])

M+ →M
′−`+`

′+ (1)

and like-sign dilepton production in high-energy hadron-hadron, lepton-hadron collisions (see,
e.g., the papers and references therein: pp → `±`′±X [4, 6], e+p → ν̄e`

+`′+X [7]) have been
extensively studied.

There exists now convincing evidence for oscillations of solar, atmospheric, reactor, and
accelerator neutrinos [8]. The oscillations, i.e., periodic neutrino flavor changes, imply that
neutrinos have nonzero masses and there is mixing: neutrinos ν` of specific flavors ` = e, µ, τ
are the coherent superposition of the neutrino mass eigen-states νN of masses mN ,

ν` =
∑

N
U`NνN . (2)

Here the coefficients U`N are elements of the unitary leptonic mixing matrix.
Neutrino flavor changes imply lepton family number L` nonconservation admissible for neu-

trinos of both types, Dirac and Majorana, but for the Dirac neutrinos, in contrast to the
Majorana ones, the total lepton number L =

∑

` L` is conserved. The nature of the neutrino
mass is one of the main unsolved problems in particle physics. However, oscillation experiments
can not distinguish between the two types of neutrinos.

In Refs. [4, 5] the rare decays (1) of the pseudoscalar mesons M = K,D,Ds, B mediated
by light (mN � m`, m`′ ) and heavy (mN � mM ) Majorana neutrinos were investigated. It
was shown that the present direct experimental bounds on the branching ratios (BRs) are too
weak to set reasonable limits on the effective Majorana masses. Taking into account the limits
on lepton mixing and neutrino masses obtained from the precision electroweak measurements,
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neutrino oscillations, cosmological data and searches of the neutrinoless double beta decay, I
have derived the indirect upper bounds on the BRs that are greatly more stringent than the
direct ones.

In this report, I investigate another mechanism of the ∆L = 2 rare decays (1) based on
supersymmetric (SUSY) theories with explicit R-parity breaking (for a review, see [9]). I recall
that R-parity is defined as R = (−1)3(B−L)+2S , where S, L, and B are the spin, the lepton, and
baryon numbers, respectively. The SM fields, including additional Higgs boson fields appearing
in the extended gauge models, have R = +1 while their superpartners have R = −1. In
the minimal supersymmetric extension of the SM (MSSM), R-parity conservation has been
imposed to prevent the L and B violation; it also leads to the production of superpartners in
pairs and ensures the stability of the lightest superparticle. However, neither gauge invariance
nor supersymmetry require R-parity conservation. There are many generalizations of the MSSM
with explicitly or spontaneously broken R-symmetry [9].

Sypersymmetric models with R-parity violation have been extensively discussed in the liter-
ature not only because of their great theoretical interest, but also because they have interesting
phenomenological and cosmological implications. I consider a SUSY theory with the minimal
particle content of the MSSM and explicit R-parity violation (6RMSSM).

The most general form for the R-parity and lepton number violating part of the superpo-
tential is given by [9, 10]

W 6R = εαβ

(

1

2
λijkL

α
i L

β
j Ēk + λ′ijkL

α
i Q

β
j D̄k + εiL

α
i H

β
u

)

. (3)

Here i, j, k = 1, 2, 3 are generation indices, L and Q are SU(2) doublets of left-handed lepton
and quark superfields (α, β = 1, 2 are isospinor indices), Ē and D̄ are singlets of right-handed
superfields of leptons and down quarks, respectively; Hu is a doublet Higgs superfield (with
hypercharge Y = 1); λijk = −λjik, λ

′
ijk and εi are constants.

This superpotential has only lepton number violating terms and is therefore in agreement
with proton stability. In the superpotential (3) the trilinear (∝ λ, λ′) and bilinear (∝ ε) terms
are present. Previously the main attention was paid to the phenomenology of the trilinear
6R Yukawa couplings. It was widely believed that the bilinear 6R terms can be rotated away
by a proper field redefinition. However, it is not the case in the presence of the soft SUSY
breaking interactions [9, 10]. The bilinear R-parity violation generically leads to the nonzero
vacuum expectation values (VEV) of the sneutrino fields and to the lepton-gaugino-higgsino
and slepton-Higgs mixing. In this work, we assume that the bilinear terms are absent at tree
level (ε = 0). They will be generated by quantum corrections [9], but it is expected that the
phenomenology will be still dominated by the tree-level trilinear terms.

The effective Lagrangian describing meson decays of the type (1) is

L = Lλ + Lλ′ + Lg̃ + Lχ̃. (4)

The trilinear terms or the R-parity breaking part of the superpotential (3) lead to the
following ∆L = 1 lepton-quark operators (the first two terms of the effective Lagrangian):

Lλ = 1
2λijk

[

ν̃Li
¯̀
Rk`Lj + ˜̀

Lj
¯̀
RkνLi + (˜̀Rk)∗(ν̄Li)

c`Lj − (i↔ j)
]

+ H.c.,

Lλ′ = λ′ijk

[

ν̃Lid̄RkdLj + d̃Lj d̄RkνLi + (d̃Rk)∗(ν̄Li)
cdLj − ˜̀

Lid̄RkuLj

−ũLj d̄Rk`Li − (d̃Rk)∗(¯̀Li)
cuLj

]

+ H.c. (5)

The third and fourth terms in the effective Lagrangian (4) are corresponding to gluino g̃ and
neutralino χ̃0 interactions with fermions ψ (quarks q and leptons ` = e, µ, τ) and their super-
partners (q̃, ˜̀) [11]:

Lg̃ = −
√

2g3
(λr)

a
b

2
(q̄aLg̃

(r)q̃b
L − q̄aRg̃

(r)q̃b
R) + H.c., (6)
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Figure 1: Feynman diagrams for the decay K+ → π−+`++`
′+ mediated by Majorana neutrinos

ν, neutralinos χ̃0, gluinos g̃ with f̃ being the scalar superpartners of the corresponding fermions
f = `, u, d (leptons and quarks). Bold vertices correspond to Bethe–Salpeter amplitudes for
mesons as bound states of a quark and an antiquark. There are also crossed diagrams with
interchanged lepton lines.

where λr are Gell-Mann matrices (r = 1, ..., 8), a, b = 1, 2, 3 are color indices of the group
SU(3)c;

Lχ̃ =
√

2g2

4
∑

δ=1

(εLδ(ψ)ψ̄Lχ̃
0
δψ̃L + εRδ(ψ)ψ̄Rχ̃

0
δψ̃R) + H.c., (7)

where
εLδ(ψ) = −T3(ψ)Nδ2 + tgθW (T3(ψ) −Q(ψ))Nδ1,

εRδ(ψ) = Q(ψ)tgθWNδ1,

Q(ψ) and T3(ψ) are the electric charge and the third component of the weak isospin of the
field ψ, respectively, the coefficients Nδσ are elements of the orthogonal 4× 4 neutralino mixing
matrix which diagonalizes the neutralino mass matrix.

At first we consider the rare decay K+(P ) → π−(P
′

) + `+(p) + `
′+(p

′

) in the 6RMSSM (a
rough estimate of the width of the decay B(K+ → π−µ+µ+) in the same theory was obtained
in [12]). The leading order amplitude of the process is described by three types of diagrams
shown in Fig. 1.

The total width of the decay is given by [13]

Γ``′ =

(

1 − 1

2
δ``′

)
∫

(2π)4 δ(4)
(

P ′ + p+ p′ − P
) |At +Ab +A3|2

2mK · 23(2π)9
d3P ′d3p d3p′

P ′0p0p′0
. (8)

Here An (n = t, b, 3) are contributions of diagrams (n) to the amplitude of the decay. They are
expressed as convolutions of leptonic L(n) and hadronic H (n) tensors:

An =
1

(2π)8

∫

L(n)H(n) d4qd4q
′

, (9)

where q (q′) is the quark-antiquark relative 4-momentum in the initial (final) meson.
The hadronic parts of the decay amplitude are calculated with the use of a model for the

Bethe–Salpeter amplitudes for mesons [14],

χP (q) = γ5(1 − δM 6P )ϕP (q), (10)

where δM = (m1 + m2)/m
2
M , mM is the mass of the meson composed of a quark q1 and an

antiquark q̄2 with the current masses m1 and m2, P = p1 + p2 is the total 4-momentum of
the meson, q = (p1 − p2)/2 is the quark-antiquark relative 4-momentum; ϕP (q) is the model-
dependent scalar function.
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For all mesons in question, mM � mSUSY , where mSUSY & 100 GeV is the common mass
scale of superpartners, and for heavy Majorana neutrinos, mN � mM (the contribution of
light neutrinos is strongly suppressed by phenomenology [4, 5]), we can neglect momentum
dependence in the propagators (see Fig. 1) and use the effective low-energy current-current
interaction. In this approximation the decay amplitude does not depend on the specific form
of the functions ϕP (q) (see Eq. (10)) and is expressed through the known decay constants of
the mesons, fM , as

fM = 4
√

Nc δM (2π)−4
∫

d4q ϕP (q) ,

where Nc = 3 is the number of colors.
For the total width of the decay we obtain

Γ(K+ → π−`+`′+) =

(

1 − 1

2
δ``′

)

f2
Kf

2
πm

3
K

212π3δ2Kδ
2
π

Φ``′

×

∣

∣

∣

∣

∣

∣

∑

i,j,k,k′,N

(λ∗ik` λ
∗
jk′`′ + λ∗ik`′λ

∗
jk′`)

λ′k12λ
′
k′11UiNUjN

m2
˜̀
Lk

m2
˜̀
Lk′

mN

(

1 − 1

2Nc

)

+(λ′`11λ
′
`′12 + λ′`′11λ

′
`12)

[

g2
2

4
∑

δ=1

1

mχ̃δ

(

2
ε∗Lδ(`)ε

∗
Lδ(`

′)

m2
˜̀L
m2

˜̀′L

(

1 − 1

2Nc

)

+
1

Nc

εRδ(d)ε
∗
Lδ(u)

m2
d̃R

m2
ũL

)

− 4g2
3

N2
c

1

m2
d̃R

m2
ũL
mg̃

]
∣

∣

∣

∣

∣

2

. (11)

Here Φ``′ is the reduced phase space integral (z = (P − P ′)2/m2
K):

Φ``′ =

∫ h−

l+

dz

(

1 − l+ + l−
2z

)

[(h+ − z)(h− − z)(l+ − z)(l− − z)]1/2 ,

and the various parameters are defined as follows:

h± = (1 ±mπ/mK)2 , l± = [(m` ±m`′)/mK ]2 ;

εLδ(ψ) = −T3(ψ)Nδ2 + tan θW (T3(ψ) −Q(ψ))Nδ1,

εRδ(ψ) = Q(ψ) tan θWNδ1,

where Q(ψ), T3(ψ), and Nδσ are defined after Eq. (7). For the numerical estimates of the
branching ratios, B``′ = Γ (M+ →M ′−`+`′+) /Γtotal, I have used the known values for the
couplings, decay constants, meson, lepton and current quark masses [8, 5], and a typical set
of the matrix elements Nδ1, Nδ2 from Ref. [15]. In addition, I have taken all the masses of
superpartners to be equal with a common value mSUSY . Taking into account the present
bounds on the effective inverse Majorana masses [5], I find that the main contribution to the
decay width comes from the exchange by neutralinos and gluinos (see Fig. 1). The results of the
calculations with the use of Eq. (11) and an analogous formula for the decays D+ → K−`+`′+

are shown in the fourth column of Table 1 (here m200 = mSUSY /(200GeV)). In the second and
third columns the present direct experimental upper bounds on the BRs [8] and the indirect
bounds for the Majorana mechanism of the rare decays [5] are shown, respectively. My result
for the B(K+ → π−µ+µ+) is in agreement with a rough estimate of Ref. [12].

To calculate the upper bounds on the BRs in the 6RMSSM, I take m200 = 1 and |λ′ijkλ′i′j′k′ |
. 10−3 [16]. It yields

B
(

K+ → π−`+`′+
)

. 10−23, B
(

D+ → K−`+`′+
)

. 10−24.

These estimates are much smaller than the corresponding direct experimental bounds but are
close (except for the ee decay mode) to the indirect bounds based on the Majorana mechanism
of the decays (see Table 1).
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Table 1: The branching ratios B
``′

for the rare meson decays M+ →M ′−`+`′+

Rare decay Exp. upper Ind. bound B``′ ×m10
200

bound on B``′ on B``′(νMSM) (6RMSSM)

K+ → π−e+e+ 6.4 × 10−10 5.9 × 10−32 1.3 × 10−17|λ′111λ′112|2
K+ → π−µ+µ+ 3.0 × 10−9 1.1 × 10−24 4.7 × 10−18|λ′211λ′212|2
K+ → π−e+µ+ 5.0 × 10−10 5.1 × 10−24 4.3 × 10−18|λ′111λ′212 + λ′211λ

′
112|2

D+ → K−e+e+ 4.5 × 10−6 1.5 × 10−31 1.4 × 10−18|λ′122λ′111 − 0.39λ′121λ
′
112|2

D+ → K−µ+µ+ 1.3 × 10−5 8.9 × 10−24 1.3 × 10−18|λ′222λ′211 − 0.39λ′221λ
′
212|2

D+ → K−e+µ+ 1.3 × 10−4 2.1 × 10−23 6.5 × 10−19|(λ′122λ′211 + λ′222λ
′
111)

−0.39(λ′121λ
′
212 + λ′221λ

′
112)|2

References

[1] P. Langacker, Nucl. Phys. B (Proc. Suppl.) 100, 383 (2001).

[2] B. Kayser, F. Gibrat-Debu, F. Perrier, “The Physics of the Massive Neutrinos” (World
Scientific, Singapore, 1989).

[3] A.S. Barabash, JINST 1, P07002 (2006); hep-ex/0602037.

[4] A. Ali, A.V. Borisov, N.B. Zamorin, Eur. Phys. J. C21, 123 (2001).

[5] A. Ali, A.V. Borisov, M.V. Sidorova, Phys. At. Nucl. 69, 475 (2006).

[6] A. Ali, A.V. Borisov, N.B. Zamorin, in “Frontiers of Particle Physics” (Proceedings of the
10th Lomonosov Conference on Elementary Particle Physics), ed. by A. Studenikin (World
Scientific, Singapore, 2003), p. 74.

[7] A. Ali, A.V. Borisov, D.V. Zhuridov, Phys. At. Nucl. 68, 2061 (2005).

[8] Particle Data Group: W.-M. Yao et al., J. Phys. G33, 1 (2006).

[9] R. Barbier et al., Phys. Rep. 420, 1 (2005).

[10] D. Aristizabal Sierra, M. Hirsch, W. Porod, JHEP 0509, 033 (2005).

[11] H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985).

[12] L.S. Littenberg, R. Shrock, Phys. Lett. B491, 285 (2000).

[13] L.B. Okun, “Leptons and Quarks” (Nauka, Moscow, 1990) [in Russian].

[14] J.G. Esteve, A. Morales, R. Núñes-Lagos, J. Phys. G9, 357 (1983).
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