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Abstract

The relativistic theory of the inverse beta-decay of polarized neutron, νe + n→ p+ e−,
in strong magnetic field is developed. We examine the cross section for different energies
and directions of propagation of the initial neutrino accounting for neutrons polarization,
effects of the proton momentum quantization in the magnetic field and also for the proton
recoil motion. It is shown that in the super-strong magnetic field the totally polarized
neutron matter is transparent for neutrinos propagating antiparallel to the direction of
polarization. The effect of nucleons anomalous magnetic moments in strong magnetic fields
is also discussed. The developed relativistic approach can be used for calculations of cross
sections of the other URCA processes in strong magnetic fields.

1 Introduction

It is by now widely recognized that strong magnetic fields can be a significant factor relevant to
diverse astrophysical and cosmological environments. The presence of strongest magnetic fields
in proto-neutron stars and pulsars is well established. The surface magnetic fields for many
radio-pulsars, that can be estimated by the observed synchrotron radiation, are of the order of
B ∼ 1012 − 1014G. There are also so-called magnetars whose surface magnetic fields are two
or three orders of magnitude higher. Very strong magnetic fields are also supposed to exist in
the early Universe (see e.g.[1]). Such fields can influence the primordial nucleosynthesis [2, 3, 4]
and affect the rate of 4He production.

Under the influence of strong magnetic fields the direct URCA processes like

n→ p+ e+ ν̄e, νe + n � e+ p, p+ ν̄e � n+ e+ (1)

can be modified. These reactions play important role in the neutron star evolution so that the
presence of strong magnetic fields significantly change the star cooling rate [8, 7, 5, 6, 9]. It is
worth to be noted here also a recent study of neutrino processes (1) in strong magnetic fields
of the order 1016G and implication for supernova dynamics [10].

The direct URCA processes have gained a lot of attention because of the asymmetry in the
neutrino emission, which can arise in the presence of strong magnetic fields. Various authors
have argued that asymmetric neutrino emission during the first seconds after the massive star
collapse could provide explanations for the observed pulsar velocities. A lot of different mech-
anisms for the asymmetry in the neutrino emission from a pulsar has been studied previously
(see e.g. [11, 12, 13, 16, 17, 15, 18, 19, 14]). For more complete references on the neutrino
mechanisms of the pulsar kicks see the review paper [20, 21].
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It is worth to be noted here that the angular dependence of the neutrino emission in URCA
processes was first considered for the neutron beta-decay neutrinos in [22, 23]. In these papers
the probability of the polarized neutron beta-decay in the presence of a magnetic field was
derived, as well as the asymmetry in the neutrino emission was studied for the first time.

The neutron beta-decay have been studied in different electromagnetic field configurations.
The first attempts to consider the beta-decay in the field of an electromagnetic wave have been
undertaken in [25] and [26]. The relativistic theory of the beta-decay of the neutron (accounting
for the proton recoil motion) in the strong magnetic field has been developed in [28]. Many
important technical details of the calculations, also useful for the studies performed in the
present paper, can be found in [27]. The rates of the two inverse processes in eqs.(1) in the
presence of a magnetic field has been derived in [12].

The present paper is devoted to a detailed study of the inverse beta-decay of neutron in a
magnetic field

νe + n→ p+ e−. (2)

The process νn→ pe in a magnetic field has been discussed previously by several authors. The
contribution of this process to the conditions for beta-equilibrium in the presence of magnetic
fields has been considered in [32]. The dependence of the cross section on the magnetic field
has been also discussed [15] in the context of the pulsar kick in the case when the asymmetric
magnetic field arises just after the star collapse.

A reasonable interest to the inverse beta-decay of neutron in magnetic fields has been stim-
ulated by a believe that it can be relevant for the neutrino opacity in the proto-neutron star
stage after supernova collapse. In [18], as well as in [19], the calculations for the cross section
have been performed under the assumption that the magnetic field gives contribution to the
phase space integrals only, whereas the process matrix element have been considered unaffected
by the magnetic field.

The first attempt to calculate modification of the neutrino sphere in pulsar due to the
asymmetry in the νn → pe cross section accounting for the magnetic field modifications of
the matrix element has been undertaken in [5]. However, in this paper, as well as in [6], the
transition to the electron lowest Landau level has been discussed. In the paper [7] the angular
asymmetry of the cross section has been calculated only to the first order in the magnetic field.

An important effect of anisotropy in the cross section of the inverse beta-decay has been
recently considered in a series of papers [33, 34, 35] where the process νn→ pe has been studied
in presence of a background magnetic field and the initial neutron polarization has been also
accounted for. However, some of the final results of refs.[33, 34] for the cross section do not
coincide with corresponding results of ref. [35].

The present paper is devoted to a detailed evaluation of the inverse beta-decay of polarized
neutron cross section in a magnetic field. For both of the charged particles (e and p) wave
functions we use the exact solutions of the Dirac equation in the presence of a magnetic field
so that we also exactly account for the magnetic field influence on the proton. The incoming
neutrino is supposed to be relativistic and effects of neutrino non-zero mass are neglected. We
do not set any special limit on the neutrino energies, however it is supposed that the four-
fermion weak interaction theory is relevant in our case. For astrophysical applications, and
for supernovas in particular, it is of interest to consider the neutrino energies in the range of
κ ∼ 1 − 30MeV .

In our consideration we account for the proton momentum quantization in the magnetic
field and for the proton recoil motion so that we develop here the relativistic theory of the
inverse beta-decay. We also suppose that the Z and W bosons are not affected by the magnetic
field. The contribution of nucleons anomalous magnetic moments in strong magnetic fields is
discussed. The former effect can be easily incorporated into our calculations by the correspond-
ing shift of the nucleons masses (see also [8, 7, 1, 36]). We also show that in the case of very
strong magnetic fields the process, due to the anomalous magnetic moments, can be forbidden.
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2 Cross section of inverse beta-decay

We start with the well known four-fermion Lagrangian,

L =
G√
2

[

ψpγµ(1 + αγ5)ψn

] [

ψeγ
µ(1 + γ5)ψν

]

, (3)

where G = GF cos θc, θc is the Cabibbo angle, and α = 1.26 is the ratio of the axial and vector
constant. The total cross section of the process can be written as

σ =
L3

T

∑

phase space

|M |2, (4)

where summation is performed over the pase space of the final particles. The matrix element
of the process is given by

M =
G√
2

∫

[

ψpγµ(1 + αγ5)ψn

] [

ψeγ
µ(1 + γ5)ψν

]

dxdydzdt. (5)

We account for the influence of the background magnetic field on the matrix element (5). The
corresponding calculations are performed by using the exact solutions of the Dirac equation in
the magnetic field for the relativistic electron and proton. Without loss of generality, a constant
magnetic field ~B is taken along the z-direction. We use the notations of our previous study
[28] of the beta-decay of the polarized neutron in a magnetic field with the proton recoil effects
have been accounted for.

The electron wave function ψe(m,n, s, p0, p2, p3) can be written in the form

ψe =
1

L









C1Un−1(η)
iC2Un(η)
C3Un−1(η)
iC4Un(η)









e−i(p0t−p2y−p3z), η = x
√
γ +

p2√
γ
, γ = eB, (6)

where Un(η) are Hermite functions of order n, e is the absolute value of the electron charge,
p0, p2 and p3 are the electron energy and momentum components, respectively. The energy
spectrum

p0 =
√

m2 + 2γn+ p2
3, (7)

depends on the discreet number n = 0, 1, 2, ... denoting the Landau levels (m is the electron
mass). The spin coefficients Ci are

C1,3 =
1

2

√

1 + s
m

p̃⊥

√

1 ± s
p̃⊥
p0
, C2,4 = ∓1

2
s

√

1 − s
m

p̃⊥

√

1 ∓ s
p̃⊥
p0
, (8)

and p̃⊥ =
√

m2 + 2γn. The spin number can have only the values ±1, s = +1 when the electron
spin is directed along the magnetic field ~B, and s = −1 in the opposite case. The electrons
on all Landau levels with n ≥ 1 can have two different spin polarizations. However, in the
lowest Landau state (n = 0) the electron spin can have the only orientation given by s = −1,
so that the electrons moving along the direction of the magnetic field are left-handed polarized,
whereas the electrons moving in the opposite direction are right-handed polarized.

The proton wave function ψp(m
′, n′, s′, p′0, p

′
2, p

′
3) can be expressed in a similar form

ψp =
1

L









C ′
1Un′(η′)

−iC ′
2Un′−1(η

′)
C ′

3Un′(η′)
−iC ′

4Un′−1(η
′)









e−i(p′0t−p′2y−p′3z). (9)
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The dashed quantities correspond to the proton mass, number of the Landau state, energy and
momentum components. Again the proton spin values are s′ = ±1, however now at the lowest
Landau level the spin orientation is along the magnetic field ~B.

The initial neutron and neutrino are supposed to be not affected by the magnetic field, and
we use the plane waves for their wave functions. The polarized neutron wave function is

ψn =
1

2L3/2









N1

N2

N3

N4









e−i(pn
0 t−~pn~r), (10)

where the neutron spin coefficients are

N1,3 = sn

√

1 ± mn

pn
0

√

1 ± sn cos θn e
∓iϕn/2, N2,4 =

√

1 ∓ mn

pn
0

√

1 ∓ sn cos θn e
±iϕn/2. (11)

Here mn, p
n
0 and ~pn are the neutron mass, energy, momentum, and θn, ϕn are the polar and

azimuthal neutron momentum angles. We perform our calculations in the rest frame of the
neutron, so that we shall take below pn

0 = mn and N3 = N4 = 0.
The neutrino wave function can be chosen in the form

ψν =
1

2L3/2









f1

f2

−f1

−f2









e−i(κt−~κ~r), f1 = −e−iϕν
√

1 − cos θν , f2 =
√

1 + cos θν , (12)

where κ, ~κ are the neutrino energy and momentum, respectively (κ = |~κ|). The neutrino polar
and azimuthal angles are denoted as ϕν and θν .

Putting these wave functions to the matrix element of the process (5), we can perform the
integrations over time t and coordinates y, z and obtain squared norm of the matrix element

|M |2 = (2π)3TL2|M̃ |2δ(p′0 + p0 − mn − κ)δ(p′2 + p2 − κ2)δ(p
′
3 + p3 − κ3), (13)

where

|M̃ |2 = 2G2
[

(α− 1)2f2
1N

2
1 (C1 − C3)

2(C ′
1 + C ′

3)
2I2

n′,n−1(ρ)

+ (C2 − C4)
2
{

4f2
1N

2
2 (αC ′

1 − C ′
3)

2 + (α+ 1)2f2
2N

2
1 (C ′

1 − C ′
3)

2
}

I2
n′,n(ρ)

+ (α− 1)2f2
2N

2
2 (C2 − C4)

2(C ′
2 + C ′

4)
2I2

n′−1,n(ρ) + (C1 − C3)
2

×
{

4f2
2N

2
1 (αC ′

2 − C ′
4)

2 + (α+ 1)2f2
1N

2
2 (C ′

2 − C ′
4)

2
}

I2
n′−1,n−1(ρ)

+ 4(α + 1)(C1 − C3)(C2 − C4)
{

f2
2N

2
1 (C ′

1 − C ′
3)(αC

′
2 − C ′

4)

+ f2
1N

2
2 (C ′

2 − C ′
4)(αC

′
1 − C ′

3)
}

In′,n(ρ)In′−1,n−1(ρ)
]

. (14)

The phase space factor in the general expression (4) for the electron and proton in the presence
of a magnetic field is

∑

phase space

=

∫

L

2π
dp2

L

2π
dp3

L

2π
dp′2

L

2π
dp′3

∑

n=0,n′=0

∑

s=±1,s′=±1

gngn′ , (15)

where g0 = 1, and gk = 2 for k ≥ 1 are the degeneracies of the Landau energy levels for
the electron and proton. After integrations over the proton momentum component p ′2 and the
electron momentum component p3 we get the laws of conservation for the two momentum
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components, p3 = κ3 − p′3, p
′
2 = κ2 − p2. The integration over the electron momentum

component p2 is performed by taking in to account the specific for the motion in a magnetic
field degeneracy of the electron energy. Finally we obtain the cross section of the inverse beta-
decay of the polarized neutron in a magnetic field with the proton recoil motion effect being
accounted for,

σ =
eB

32π

∑

s,s′

∑

n,n′

∞
∫

∞

|M̃ |2δ0(p′0 + p0 −mn − κ)
∣

∣

p3=κ3−p′3
dp′3, (16)

where |M̃ |2 is given by (14) with p3 being substituted by κ3−p′3 because we have already perform
the integration over the component of the electron momentum p3 with use of the corresponding
δ-function. The remaining integration over the component p′3 of the proton momentum is
performed with use of the δ0

(

ϕ(p′3)
)

-function. The argument ϕ(p′3), being equated with zero,
gives the law of energy conservation for the particles in the process,

mn + κ =
√

m2 + 2γn+ (κ3 − p′3)
2 +

√

m′2 + 2γn′ + p′3
2. (17)

There are the two roots of the equation ϕ(p′3
(i)) = 0,

p
′(1,2)
3 =

1

2
[

(mn + κ)2 − κ
2
3

]

{

κ3

[

(mn + κ)2 + p̃′2⊥ − p̃2
⊥ − κ

2
3

}

± (mn + κ)

√

[

(mn + κ)2 − p̃′2⊥ − p̃2
⊥ − κ

2
3

]2
− 4p̃′2⊥p̃

2
⊥

}

. (18)

Finally we obtain the cross section of the inverse beta-decay of the polarized neutron in a
magnetic field, with the effects of the Landau quantization of the proton momentum and of the
proton recoil motion being accounted for exactly,

σ =
eB

32π

∑

s,s′

∑

n,n′

∑

i=1,2

|M̃ (i)|2
∣

∣

∣

p
(i)
3

p
(i)
0

− p
′(i)
3

p
′(i)
0

∣

∣

∣

, (19)

where one of the sums is performed over the roots p
′(i)
3 (18), and

p
(i)
3 = κ3 − p

′(i)
3 , p

′(i)
0 =

√

p̃′2⊥ + p
′(i)2
3 , p

(i)
0 =

√

p̃2
⊥ + (κ3 − p

′(i)
3 )2. (20)

The squared matrix element |M̃ (i)|2 is given by eq. (14) where the substitution p′3 → p′3
(i)

must be done.

3 Critical magnetic field

Now let us consider eq. (17) in detail that gives the energy conservation law by accounting for
the presence of a magnetic field. Due to the particular properties of the energy spectra of the
electron and proton in a magnetic field, we can introduce two critical values of the magnetic
field strength. First let us determine the critical electron magnetic field, Bcr, from the condition
that in the external field B ≥ Bcr the electron can occupy only the lowest Landau level with
n = 0. From (17) we get that for a fixed maximum neutrino energy κmax and for a fixed
strength of the magnetic field, the maximum number of the available electron Landau level is

nmax = int
[(∆ + κmax)2 −m2

2eB

]

, ∆ = mn −m′. (21)
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Figure 1: Dependence of the electron critical magnetic field Bcr (dashed line) and the proton critical
magnetic field B′

cr (solid line) on the initial neutrino energy κ (MeV ). The logarithmic scale is used:

B∗ = log B
B0

, where B0 = m2

e
.

From the condition nmax < 1 (it means that the electron can occupy only the lowest Landau
level with n = 0) we get

Bcr =
(∆ + κmax)2 −m2

2e
. (22)

The critical proton magnetic field, B ′
cr, was determined from the condition that in the

external field B ≥ B ′
cr the proton can occupy only the lowest Landau level with the number

n′ = 0. Again, from (17) we get that for a fixed maximum neutrino energy κmax and for a fixed
strength of the magnetic field, the maximum number of the available proton Landau level is

n′max = int
[(κmax +mn −m)2 −m′2

2eB

]

. (23)

The proton can occupy only the Landau level with n′ = 0 if the magnetic field strength exceeds
the proton critical field

B′
cr =

(κmax +mn −m)2 −m′2

2e
. (24)

Thus, Bcr and B′
cr depend on the maximum available neutrino energy. For different neutrino

energies we have the following values of the electron and proton critical magnetic field:

Bcr ≈ 8.3 × 1016G, B′
cr ≈ 5 × 1018G, κmax = 30 MeV (25)

Bcr ≈ 1.1 × 1016G, B′
cr ≈ 1.7 × 1018G, κmax = 10 MeV (26)

Bcr ≈ 1.2 × 1014G, B′
cr ≈ 1.3 × 1017G, κmax � m. (27)

In Fig.1 we plot the values of the critical fields Bcr (dashed line) and B ′
cr (solid line) as

functions of the initial neutrino energy κ.
From the above we conclude that there are the three ranges of the magnetic field strength

which we call: 1) the weak field (B ≤ Bcr), 2) the strong field (Bcr < B < B′
cr), and 3) the

super-strong field (B ′
cr ≤ B). For the most of the weak field range (B � Bcr) the electron

n and proton n′ Landau numbers can have very large values. Inside the strong field range
(Bcr < B � B′

cr) only the proton number n′ can have very large values, whereas the electron
number is always zero. In the super-strong fields the both Landau numbers are zero, n = n ′ = 0.

4 Cross section in super-strong, strong and weak magnetic fields

4.1 Cross section in super-strong magnetic field

Let us start with consideration of the super-strong magnetic field B ≥ B ′
cr. In this case the

both numbers of the Landau levels for the electron and proton are zero. The squared matrix
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element |M̃ |2 in eq. (14) is reduced to

|M̃n=n′=0|2 = 2G2(C2 − C4)
2
{

4f2
1N

2
2αC

′
1 − C ′

3)
2 + (α + 1)2f2

2N
2
1 (C ′

1 − C ′
3)

2
}

e−ρ. (28)

Putting back in (19), we obtain the cross section of the process in the presence of the super-
strong magnetic field

σn=n′=0 =
eBG2

8π
e−

κ
2
⊥

2γ

∑

i=1,2

(

1 +
p
(i)
3

p
(i)
0

)

∣

∣

∣

p
(i)
3

p
(i)
0

− p
′(i)
3

p
′(i)
0

∣

∣

∣

{

a(i) + b(i) cos θ + sn(b(i) + a(i) cos θ)
}

, (29)

where

a(i) = 3 + 2α+ 3α2 − 2(1 − α2)
m′

p
′(i)
0

− (1 + 6α + α2)
p
′(i)
3

p
′(i)
0

,

b(i) = −1 + 2α− α2 + 2(1 − α2)
m′

p
′(i)
0

− (1 − α)2
p
′(i)
3

p
′(i)
0

. (30)

The effect of the proton motion, which appears in this case exceptional due to the proton recoil
in z-direction, is accounted exactly in eqs. (29) and (30). It is worth to be mentioned that
the derived expression for the cross section in the super-strong magnetic field B ≥ B ′

cr can be
applied for neutrinos with arbitrary (also ultra-high) energies (note that following to eq. (24)
the value of B ′

cr is increasing with the neutrino energy increase).
If we neglect the proton momentum parallel or antiparallel to the magnetic field, we get

σn=n′=0
∣

∣

p′
0
=m′

=
eBG2

4π
e
−

κ
2
⊥

2γ {a+ b cos θ + sn(b+ a cos θ)} ∆ + κ

√

(∆ + κ)2 −m2
, (31)

where
a = 1 + 2α+ 5α2, b = 1 + 2α − 3α2. (32)

For α = 1.26 one can get a = 11.5 and b = −1.24. Note that the same coefficients a and b
determine the neutrino asymmetry in the probability of the direct neutron beta-decay in the
super-strong magnetic field [28, 14]. In the case of moderate neutrino energies κ

2 � eB (the
last inequality is valid in the super-strong magnetic field B ≥ B ′

cr for the range of the neutrino
energies κ ≤ 30 MeV ) the exponential term in (29) must be substituted for unit.

In the case of non-polarized neutrons we have to overage the cross section over the neutron
spin

σunpol. =
1

2

∑

sn=±1

σ(sn). (33)

We also can use the obtained expressions for the cross section in analysis of the neutrino
interaction with partially polarized neutron matter when the numbers of neutrons (per unit
volume) with the two different spin polarizations are N+ and N−, respectively. The partially
polarized neutron matter can be characterized by the neutrons polarization S determined as

S =
N+ −N−

N+ +N−
. (34)

All the obtained above formulas for the cross section can be used for the case of partially
polarized neutron matter if one substitutes sn for S.

In Fig.2, we have plotted, for neutrino energy κ = 10 MeV , the cross section in the magnetic
field B = B′

cr, normalized to the cross section in the field-free case, as a function of neutrons

7



Figure 2: The cross section σ in super-strong magnetic field B = B ′

cr, normalized to the cross section
σ0 in the field-free case, for neutrinos with energy of κ = 10 MeV as functions of the direction of the
neutrino momentum cos θ and polarization of neutrons S.

Figure 3: Initial and final particles spin orientations for the two directions of the neutrino propagation
(cos θ = ±1) in the super-strong magnetic field B ≥ B′

cr. The broad arrows represent the particles spin
orientations, the solid arrows show directions of the neutrino propagation, and the dashed arrow shows
the direction of the magnetic field vector. The cross section is zero when the sum of the spin numbers
of the initial particles sν , sn is not equal to the sum of the spin numbers of the final particles se, sp.

polarization S and of cos θ (θ is the angle the neutrino momentum makes with the magnetic
field). The cross section (31) vanishes to zero for the cases when the direction of the neutrons
total polarization is antiparallel to the direction of the neutrino momentum, S cos θ = −1.

Thus, for these two cases the neutron matter is transparent for neutrinos. These phe-
nomenon appears due to the Landau quantization of the momentum and the spin properties of
the charged particles in the strong and super-strong magnetic fields. In the field B ≥ B ′

cr the
final electron and proton can move only parallel to the fixed line that is given by the magnetic
field vector. For the the neutrino also moving along this line and the neutron being at rest, the
law of angular momentum conservation reduces to the law of ”spin number conservation”. In
Fig.3 we present an illustration of the law of the ”spin number conservation”.

4.2 Cross section in strong magnetic field

In the case of strong magnetic fields Bcr ≤ B < B′
cr, the electron can only occupy the lowest

Landau level with n = 0, whereas there could be many Landau levels available for the proton.
The maximum number of the proton Landau level is estimated as

n′max = int

[

(mn + κ −m)2 −m′2

2eB

]

≈ int

[

m′(∆ + κ −m)

eB

]

. (35)
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For the squared matrix element of the process we get from (14)

|M̃n=0|2 = 2G2(C2 − C4)
2
[

(α− 1)2f2
2N

2
2 (C ′

2 + C ′
4)

2I2
n′−1,0(ρ)+

+
{

4f2
1N

2
2 (αC ′

1 − C ′
3)

2 + (α+ 1)2f2
2N

2
1 (C ′

1 − C ′
3)

2
}

I2
n′,0(ρ)

]

. (36)

Putting the squared matrix element (36) to the general formula for the cross section, eq.
(19), we get the expression for the cross section,

σn=0 =
eBG2

8π

n′
max
∑

n′=0

∑

i=1,2

(

1 +
p
(i)
3

p
(i)
0

)

∣

∣

∣

p
(i)
3

p
(i)
0

− p
′(i)
3

p
′(i)
0

∣

∣

∣

{

[

(1 + α)2
(

1 − p
′(i)
3

p
′(i)
0

)

(1 + S)(1 + cos θ)

+ 2
[

1 + α2 − (1 − α2)
m′

p
′(i)
0

− 2α
p
′(i)
3

p
′(i)
0

]

(1 − S)(1 − cos θ)

]

I2
n′,0(ρ)

+ (1 − α)2
(

1 − p
′(i)
3

p
′(i)
0

)

(1 − S)(1 + cos θ)(1 − δn′,0)I
2
n′−1,0(ρ)

}

. (37)

Together with the expression (18) for p′3
(i), equation (37) gives the cross section for the

process in the strong magnetic field exactly accounting for the proton momentum quantization
and the proton recoil motion.

A simplification can be achieved if we neglect the proton motion in the plain orthogonal to
the magnetic field vector and account only for the proton recoil in z-direction. In this case we
get

σn=0
∣

∣

p′
⊥

=0,p′3 6=0

=
eBG2

4π

∑

i=1,2

(

1 +
p
(i)
3

p
(i)
0

)

∣

∣

∣

p
(i)
3

p
(i)
0

− p
′(i)
3

p̃
′(i)
3

∣

∣

∣

{

(

1 + 3α2 − (1 + α)2
p
′(i)
3

m′

)

+
(

1 − α2 − (1 − α)2
p
′(i)
3

m′

)

cos θ + S

[

2α(1 − α) +
(

2α(1 + α) − 4α
p
′(i)
3

m′

)

cos θ

]

}

. (38)

If we also neglect the effect of the proton motion in z-direction, then for the cross section
in the strong field Bcr < B � B′

cr we get

σn=0
∣

∣

p′0=m′

=
eBG2

2π

{

1 + 3α2 + (1 − α2) cos θ

+ 2αS
[

1 − α+ (1 + α) cos θ
]

}

∆ + κ

√

(∆ + κ)2 −m2
. (39)

For the neutron matter totally polarized parallel to the magnetic field vector, S = 1, the cross
section is vanish.

The cross section in the strong magnetic field B = Bcr, normalized to the cross section in
the field-free case, calculated with use of the exact eq. (37) is shown in Fig.4. Note also that,
as it can be seen from the Fig.4, the cross section for cos θ = 1 and S = −1 is also rather small.
This is a consequence of smallness of the value (α− 1) because the cross section in this case is
proportional to (1 − α)2 < 0.1. The neutrino energy is chose to be κ = 10 MeV , that is why
the effects of the proton recoil motion cannot be screened.

9



Figure 4: The cross section in the strong magnetic field B = Bcr, normalized to the cross section in
the field-free case, for neutrinos with energy of 10 MeV as functions of the direction of the neutrino
momentum cos θ and polarization S of neutrons. The cross section in the magnetic field in the case
cos θ = −1, S = 1 is exactly zero, whereas the cross section in the case cos θ = 1, S = −1 is not zero,
however it is rather small because it is proportional to (1 − α)2 < 0.1.

4.3 Cross section in weak magnetic field

In the case of weak magnetic fields B < Bcr many Landau levels become available for the
electron so that the electron can have non-zero momentum p⊥ =

√
2γn in the transverse plane.

The maximum allowed value for n is given by (21). In the calculations of the cross section in the
presence of a weak magnetic field we perform the summation over the proton Landau number
n′ up to infinity. The particular contribution to the cross section from the partial process with
the electron at the lowest Landau level (n = 0) has been already discussed. Therefore, we
derive now the fraction σn≥1 of the total cross section that is the sum of the corresponding
contributions from the excited electron Landau levels with n ≥ 1. The final result for the cross
section can be expressed as

σtot = σn=0 + σn≥1. (40)

Putting the general expression for the squared matrix element (14) to (19), then expanding over
p′3
m′ and performing summation over n′, we obtain to the first order in the proton recoil motion

σn≥1 =
eBG2

2π

nmax
∑

n=1

∑

i=1,2

1
∣

∣

∣

p
(i)
3

p
(i)
0

− p
′(i)
3

p
′(i)
0

∣

∣

∣

[

1 + 3α2 + 2α(1 − α)
p
′(i)
3

m′
(1 + cos θ) + 2Sα(1 + α) cos θ

+ 2(1 + α)2
γn

p
(i)
0 m′

(1 + S cos θ)

]

. (41)

In the limit of non-moving proton (p′0 = m′) the contribution to the cross section for n ≥ 1 is

σn≥1
∣

∣

p′
0
=m′

=
eBG2

π

[

1 + 3α2 + 2Sα(1 + α) cos θ
]

nmax
∑

n=1

∆ + κ

√

(∆ + κ)2 −m2 − 2γn
. (42)

Summing this result with one of eq. (39), we get the result of ref.[35] for the total cross section
in the case of weak magnetic field (the proton recoil motion is neglected here)

σ
tot

∣

∣

p′0=m′

=
eBG2

2π

nmax
∑

n=0

{

gn

[

1 + 3α2 + 2Sα(1 + α) cos θ
]

+ δn,0

[

(1 − α2) cos θ + 2Sα(1 − α)
]

}

∆ + κ

√

(∆ + κ)2 −m2 − 2γn
. (43)
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Figure 5: The resonance behavior of the cross section in magnetic field, normalized to the field-free

case, for neutrino energy κ = 10 MeV . The logarithmic scale is used: B∗ = log B
B0

, where B0 = m2

e
.

As it follows from (42) and (43), the cross section has several resonances (see also [18, 35]).
Similar resonances in the probability of the direct beta-decay of the neutron in the magnetic
field was first discovered in [22, 23]. In our case the resonances appears, for the given neutrino
energy κ and magnetic field strength B, each time when the final electron energy p0 is exactly
equal to one of the allowed (n ≤ nmax) ”Landau energies” p̃⊥ =

√

m2 + 2γn,

p0 = κ + ∆ =
√

m2 + 2γn. (44)

In Fig.5 we plot the cross section as a function of B (in the range of not very strong magnetic
fields, B ≤ Bcr) for the energy κ = 10 MeV . Obviously, the similar resonance behavior appears
in the cross section as a function of the neutrino energy in a given fixed magnetic field. The
number of resonances, which is equal to the number of terms in the sum of eq. (42), increases
with the increase of the neutrino energy for a given B. The cross section, calculated without
effects of the proton recoil motion, goes to infinity in the resonance points. However, if we plot
the cross section with use of eqs. (37) and (41), which accounts for the proton motion, then
the infinitely high spikes smooth out.

4.4 Cross section in the absence of magnetic field

The inverse beta-decay in the absence of a magnetic field was considered before by many authors
(see, for instance, [38, 39, 40]). The result for the cross section νe + n → e + p in the absence
of the magnetic field is

σ0 =
G2

π

[

1 + 3α2 + 2αSn(1 + α) cos θ
]

(∆ + κ)
√

(∆ + κ)2 −m2. (45)

When the field is switching off the maximum number of the Landau level nmax is increasing
to infinity, however the product eBn remains constant,

lim
γ→0,n→∞

γn =
(∆ + κ)2 −m2

2
. (46)

In the sum over n in (43) the contribution of the lowest Landau level is diminishing in
comparison with the contributions of the exited Landau levels n > 0. For the estimation of the
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former we use following the similar procedure described in [22, 23] and have

lim
γ→0

γ

nmax
∑

n=0

1
√

(∆ + κ)2 −m2 − 2γn
= lim

γ→0
γ

[ nmax
∫

0

dx
√

(∆ + κ)2 −m2 − 2γx
+ C

]

= lim
γ→0

γ

[

1

γ

√

(∆ + κ)2 −m2 + C

]

=
√

(∆ + κ)2 −m2, (47)

where C is a function proportional to γ−1/2. Thus, in the limit B → 0 from (43) we get the
cross section of the process in the absence of a magnetic field (45).

4.5 Effects of Anomalous Magnetic Moments of Nucleons

When considering the influence of very strong magnetic fields on the inverse beta-decay of
a neutron one should be careful about the effect of magnetic field on anomalous magnetic
moments of a neutron and proton. In particular, it is known (see, for instance, [29, 1, 36])
that the interplay between anomalous magnetic moments of the neutron and proton shifts the
masses of these particles. These effects are important only for the super-strong magnetic fields,
when the corresponding shift of the electron energy due to the electron anomalous magnetic
moment is vanishing [41, 42] (see also in [1]).

The energy of the moving proton and the neutron at rest in a magnetic field, with the
contributions from the anomalous magnetic moments interaction being accounted for, are given
respectively by expressions

p′0 =

√

(
√

m′2 + 2eBn′ − s′kpB
)2

+ p′3
2, pn

0 = mn − snknB, (48)

where the values of the proton and neutron anomalous magnetic moments

kp =
e

2m′
(
gp

2
− 1), kn =

e

2mn

gn

2
, (49)

are determined by the Lande’s g−factors: gp = 5.58, gn = −3.82.
Taking into account modified expressions for the proton and neutron energies (48), we can

repeat all the described above calculations applying the substitutions

m′ → m′∗ = m′ − kpB, mn → mn
∗ = mn − snknB. (50)

Note that in the super-strong magnetic filed B ≥ B ′
cr there is the only one spin state for

the proton with s′ = +1.
The law of energy conservation (17) shows that in the super-strong magnetic field there is

a range of the neutron matter polarization S for which the matter becomes transparent for
neutrinos. From (17) we get that the process νe + n→ e+ p is forbidden if (Skn − kp) > 0 and
the magnetic field exceeds the value of Bforb:

Bforb =
∆ + κ −m

Skn − kp
. (51)

Note that this forbidding effect appears for nearly maximum neutron matter polarizations
against the magnetic field, −1 ≤ S < kp/kn ≈ −0.94. The values of Bforb for different neutrino
energies in case of maximum neutron spin polarization S = −1 are

Bforb ≈ 8.5 × 1019G, κmax = 30 MeV, (52)

Bforb ≈ 3.0 × 1019G, κmax = 10 MeV, (53)

Bforb ≈ 2.2 × 1018G, κmax � m. (54)
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5 Conclusions

We have developed the relativistic theory of the inverse beta-decay of the polarized neutron in
a magnetic field. Effects of the proton momentum quantization in the magnetic field have been
included. The obtained closed expression for the cross section in the magnetic field exactly ac-
counts for the proton longitudinal and transversal motion. For the three ranges of the magnetic
field (which we call the super-strong magnetic field B ≥ B ′

cr, the strong field Bcr ≤ B < B′
cr,

and the weak field B < Bcr) we have calculated the cross section and discussed its dependence
on the neutrino energy and angle θ, as well as on the neutron polarization S.

In description of the proton we have used the the exact solution of the Dirac equation in a
magnetic filed. This enables us to get the exact cross section in the case of the super-strong
magnetic field B ≥ B ′

cr when the proton can occupy only the lowest Landau level n′ = 0. We
have shown that it is not correct to use the cross section, derived under the assumption that
the proton wave function is not modified by the magnetic field, in the case when only one or
not many Landau levels are opened for the proton even if the proton motion is neglected. Thus
we conclude that the Landau quantization of the proton momentum have to be accounted for
not only the super-strong magnetic field, but even for lower magnetic fields when not too many
Landau levels are opened for the proton.

We have shown that in the case of the total neutrons polarization (S = ±1) the cross
section is exactly zero in the super-strong magnetic filed if S cos θ = −1, i.e. in the two cases:
1) S = 1, cos θ = −1, and 2) S = −1, cos θ = 1. Thus, in the super-strong magnetic field the
totally polarized neutron matter is transparent for the neutrino propagating in the direction
opposite to the direction of the neutrons polarization. In the case of the strong magnetic filed
the cross section is exactly zero if S = 1 and cos θ = −1, that confirms the result of ref.[35].
These asymmetries in the cross section appear as a consequence of the angular momentum
conservation and of the spin polarization properties of the electron and proton being at the
lowest Landau levels in the magnetic field.

It should be noted that the developed relativistic treatment of the cross section can be
applied to the other URCA processes with two particles in the initial and final states.
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