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Abstract

Recent lattice data indicate that volume occupied by topological fermionic modes shrinks
to zero in the continuum limit of vanishing lattice spacing a. The data apparently cannot
be accommodated within, say, conventional instanton model. We present field-theoretic
arguments which demonstrate that the topological fermionic modes are to shrink to a van-
ishing submanifold of the whole four dimensional space provided that measurements are
performed with high resolution. As for the dimensionality of the submanifold, there are
theoretical arguments in favor of three dimensional domain walls.

Introduction

In this talk we will discuss topological defects in YM vacuum. By topological defects we
understand regions with large absolute value of the density of the topological charge Qtop(x),

Qtop(x) = (16π2)−1GaG̃a.

Usually one thinks about such regions in terms of instantons. For instantons, 1

(

∫

d4xQtop(x)
)

instanton
= 1 ,

which is a large compared to the perturbative noise which contains extra power of αs. The
instanton picture has been challenged since long because of inconsistencies in the large Nc limit
[3, 4]. An alternative description could be provided by domain walls [3]. The theory of domain
walls is not developed in detail, however.

Note that domain walls are, by definition, 3d defects in vacuum. Thus, one could argue
that in the domain-walls picture topological defects would occupy a vanishing fraction of the
whole 4d space. As far as we know, however, this point has never been emphasized. Moreover,
the first example of low-dimensional vacuum defects was provided by lattice strings, or vortices
which are responsible for confinement 2. references see, e.g., [5, 6]).

The possibility that topological defects could occupy a a submanifold of 4d space was sug-
gested first in Ref [6] in the context of the lattice 3d defects discovered in [7] and closely related
to the vortices. Independently, there began to appear data on unusual behavior of fermionic
zero modes as function of the lattice spacing [8]. The data does indicate that topological de-
fects shrink to a vanishing subspace of the whole space if measurements are performed with
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1The instanton model has been elaborated in great detail, for review see [1, 2].
2For review of the role of the vortices in the confinement see [5] while identification of the vortices with strings

is discussed, e.g., in [6].
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high resolution, that is on the scale of the lattice spacing. However, it is too early to conclude
what is the dimension (in physical units) of this submanifold 3.

Low-lying fermionic modes

To uncover topology of the gluonic fields one concentrates on low-lying modes of the Dirac
operator. The modes are defined as solutions of the eigenvalue problem

Dµγµψλ = λψλ , (1)

where the Dirac operator is constructed on the vacuum gluonic field configurations {Aa
µ(x)}.

For exactly zero modes, the difference between modes with positive and negative chirality
equals to the total topological charge of the lattice volume:

n+ − n− = Qtop . (2)

Assuming that topological charge fluctuates by order unit independently on pieces of 4d volumes
measured in physical units one derives:

〈Q2
top〉 ∼ Λ−4

QCDVtot ≈ (180MeV )4Vtot , (3)

The numerical coefficient here is related to the η
′

-mass (the Witten-Veneziano relation).
One also considers so called near-zero modes which occupy, roughly speaking the interval

0 < λ <
π

Llatt

, (4)

where Llatt is the linear size of the lattice. Near-zero modes determine the value of the quark
condensate via the Banks-Casher relation:

〈q̄q〉 = − πρ(λ→ 0) , (5)

where λ→ 0 with the total volume tending to infinity.

Lattice data

While the close relation of the low-lying fermionic modes to the topology of the underlying
gluon fields is well known since long, it is only recently that these modes have been measured
on the original field configurations, without cooling. This recent progress is due to the advent
of the overlap operator [10].

Measurements on original fields [8] confirmed the general relations (3) and (5). However,
they also brought an unexpected result that the volume occupied by low-lying modes apparently
tends to zero in the continuum limit of vanishing lattice spacing, a→ 0. Namely,

lim
a→0

Vmode ∼ (a · ΛQCD)r → 0 , (6)

where r is a positive number of order unit and the volume occupied by a mode, Vmode is defined
in terms of the Inverse Participation Ratio (IPR) 4.

A crucial question is then, whether the underlying vacuum structure is the same for the
confining fields and fields with non-trivial topology. An attempt to answer this question was

3Possible relevance of the domain walls introduced in the dual formulations of gauge theories to lattice mea-
surements on the fermionic modes was pointed out recently in Ref. [9]. Note, however, that vacuum defects
introduced in this reference occupy not a 3d submanifold but almost the whole 4d space.

4Independent evidence in favor of shrinking of the regions occupied by topologically non-trivial gluon fields
was obtained in [11].
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undertaken in Ref. [12] through a direct study of correlation between intensities of fermionic
modes and of vortices.

In more detail, center vortex is a set of plaquettes {Di} on the dual lattice, for review see
[5]. Denote the set of plaquettes dual to {Di} by {Pi}. Then the correlator in point is defined
as:

Cλ(P ) =

∑

Pi

∑

x∈Pi
(ρλ(x) − 〈ρλ(x)〉)

∑

Pi

∑

x∈Pi
〈ρλ(x)〉

. (7)

Since
∑

x ρλ(x) = 1 and 〈Vtotρλ(x)〉 = 1, Eq (7) can be rewritten as

Cλ(P ) =

∑

Pi

∑

x∈Pi
(Vtotρλ(x) − 1)

∑

Pi

∑

x∈Pi
1

. (8)

Results of measurements can be found in the original paper [12]. Here we briefly summarize
the finding.

First of all, there is strong positive correlation between intensities of fermionic modes and
density of vortices. Second, the value of the correlator depends on the eigenvalue and the
correlation is strong only for the topological fermionic modes. Finally and most remarkably,
the correlation grows with diminishing larttice spacing. A simple analysis reveals that, indeed,
if the 2d defects are entirely responsible for chiral symmetry breaking or constitute a boundary
of 3d defects carrying large topological charge, the correlator (7) grows as an inverse power of
the lattice spacing. The data does show that the correlator grows for smaller a but does not
allow yet to uniquely fix the dimensionality of the chiral defects.

Pieces of theory

The result (6) is in striking contradiction with the instanton model and at first sight seems very
difficult to appreciate. A more careful analysis demonstrates, however, that the shrinking of
topological fermionic modes could have predicted from field theory 5.

As is explained above the topological fermionic modes just reveal the topological structure
of the underlying gluon fields and we can concentrate, therefore, on distribution of GG̃(x).
Consider correlator of the topological density at two points. From general principles alone, one
can that for any finite x:

〈 GG̃(x), GG̃(0) 〉Minkowski > 0 (9)

〈 GG̃(x), GG̃(0) 〉Euclidean < 0 .

On the other hand, for a pure instanton, or within a zero mode:

〈 GG̃(x), GG̃(0) 〉instanton > 0 . (10)

Since the instanton contribution (10) taken alone violates unitarity, compare (9), it cannot
dominate and the unitarity is restored at any finite x by perturbative contributions. Somewhat
schematically, the correlator can be represented as

〈 GG̃(x), GG̃(0) 〉Euclidean ∼ −
c1α

2
s

x8
+ c2Λ

4
QCDδ(x) , (11)

where c1,2 are positive constants and the 1/x8 term is perturbative.
The central point is that by measuring topological modes we filter the perturbative noise

away and are left with the local term. In the language of dispersion relations, this is a subtraction
term, which has no imaginary part [14].

5The argumentation was worked out by A.I. Vainshtein and the author and outlined in some detail in the talk
[13].
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It is only natural then that contributions which are described by subtraction constants in
dispersion relations appear as vanishing submanifolds once attempt is made to measure their
spatial extension, or volume. Moreover, to see that the volume is small we need measurements
with high resolution. Hence, dependence on the lattice spacing exhibited by the data (6). In
this sense, the lattice spacing a is to be understood as resolution of the measurements rather
than as an ultraviolet cut off.

Dimensionality of the chiral defects

Although this type of argument makes observation (6) absolutely natural and predictable, it
does not immediately fix the exponent r. Theory seems to favor r = 1, or 3d defects but
no reliable derivation actually exists. Here we briefly mention the arguments in favor of 3d
topological defects.

First, we already mentioned that domain walls appear naturally in dual formulations of
Yang-Mills theories with large Nc. Note, however, that there could be non-trivial fractal di-
mensions so that 3d manifold would percolate through the 4d space and occupy the whole or a
finite part of it [9]. From experience with lattice strings, see, e.g. [6], we would still expect zero
anomalous fractal dimension and topological defects occupying 3d volume in physical units.

Also, one can invoke analogy with quantum mechanics 6. In case of quantum mechanics,
the phenomenon is that if one tries to measure the time spent by a particle under the barrier,
the time turns to be zero. A mnemonic rule is that the particle under the barrier lives in
imaginary time and when projected to real time the barrier transition has zero duration (for
details and references see [13]). Violation of the unitarity in (10) could also be formally removed
by changing one coordinate from real to imaginary values. Thus, one expects that only one
coordinate collapses to a vanishing interval.

Clearly, all theoretical arguments in favor 3d defects are suggestive at best.
Note also that while the shrinking of topological modes (6) follows from Yang-Mills theory,

explaining the observed correlation of the topological modes with the lattice strings is beyond
the scope of field theory. Probably, clues are provided by theory of the defects in the dual,
string formulation but there has been no discussion of the issue in the literature.

Protected and unprotected matrix elements

There is a drastic difference between results of measurements of, say, topological susceptibility
(3) and of the instanton size. While the value of (3) does not depend on the resolution, or
lattice spacing a, the size of topological excitations changes drastically :

(

size
)

resolution a
∼ exp(−const/g2(a)) ·

(

size
)

resolution ΛQCD
, (12)

where g2(a) is the bare coupling.
Clearly, one cannot think of deriving (12) in perturbation theory. Rather, one should think

in terms of theory of measurements. As a matter of fact, the chiral condensate does not depend
on the resolution and can be measurement either without or with cooling while the size of
topologically non-trivial regions of gluon field depends power-like on the resolution. One can
talk, therefore, about ‘protected’ and ‘unprotected’ matrix elements.

The question is then whether we can judge theoretically which matrix element is protected.
Without trying to formulate here a general recipe, turn to examples.

The local matrix element (5) is given by

〈q̄q〉 ∼ lim
mq→0

mq

∫

ρ(λ)
dλ

(λ2 +m2
q)

, (13)

6See footnote 5.
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where λ is the eigenvalue, see (1). With lattice spacing a→ 0 the number of eigenvalues grows
power-like since λmax ∼ 1/a. However, it is clear that all these modes are canceled from (13)
in the limit of the vanishing quark mass, mq → 0. Thus, quark condensate gives an example of
a protected matrix element.

To define instanton size in terms of a matrix element one can try a non-local generalization
of (13). Namely, consider the correlator 7 :

〈 q̄α(x), qβ(0) 〉

where we omit the spinor indices but keep the color indices, α, β. Because of chirality conser-
vation, the correlator (14) is not contributed by perturbation theory.

True, our correlator is not acceptable yet because it is not gauge invariant. To amend this,
one can insert the phase factor:

〈 q̄α(x)Φα,β(x, 0)qβ(0) 〉 ≡ f1(x
2) , (14)

where, as usual, Φ(x.0) = P exp i
∫

Aµdxµ. In the quasiclassical approximation, instantons do
contribute to (14) and produce a non-trivial x2 dependence with characteristic scale of ΛQCD.
This scale could be considered as a general definition of the size of topological excitations in
terms of a gauge invariant matrix elements. Another possibility is to introduce a color scalar
field φα and consider correlator of colorless spinor currents:

〈 q̄α(x)φ̄α(x), qβ(0)φβ(0) 〉 ≡ f2(x
2) . (15)

The question is now whether the matrix elements (14), (15) are protected or not.
It is obvious that the matrix element (14) changes greatly if measurements are performed

with resolution of order a. Indeed the P-exponent entering (14) has ultraviolet divergent action
(the same as, say, Wilson line). Therefore,

f1(x) ∼ exp
(

− const
|x|

a

)

, (16)

and we conclude that the matrix element (14) is not protected against huge resolution-dependent
corrections.

Turn now to another possibility, that is correlator (15). If the scalar field is dynamical and
assumed to propagate then the correlator (15) is also hugely suppressed at |x| � a. Indeed, the
scalar particle acquires quadratically divergent mass,

M2
φ ∼ αs/a

2 . (17)

Of course one could try to renormalize mass but then many orders of perturbation theory should
be taken into account and the correlator (15) is no simpler than (14) discussed above.

An interesting question, what happens if the scalar field–like the fermionic one– is treated
in the quenched approximation, i.e. as non-propagating external field. At first sight, then there
is no power-like sensitivity of (15) to the resolution. In fact, a power-like dependence on the
lattice spacing is still there since the volume occupied by low-lying modes of the scalar field
tends to zero in the quenched approximation: [15]

Vmode φ ∼ aq (18)

with value of q of order unit and varying from one color representation of scalar field to another.
Note that we could evaluate the correlator (15) by inserting a full set of intermediate physical

states. In the quenched approximation, this sum is very simple since in pure gluodynamics (also
with possible inclusion of a scalar particle) there are no spinor ‘hadrons’ and the correlator (14)
reduces to a local term. In other words, we reproduce again the logic that led us to (11) but
this time without the perturbative background.

7This definition, in its gauge invariant versions, see below, was suggested to me by V.A. Rubakov.
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Conclusions

Lattice measurements on original, hard fields Aa
µ ∼ 1/a brought unexpected, power-like de-

pendences on the lattice spacing [16, 8, 15]. Such dependences have been scarcely discussed
theoretically. In this talk we presented a few observations on such divergences not necessarily
closely related to each other.

In particular, we argued that the lattice spacing plays the role of resolution. An analogy
from quantum mechanics is measurements of instantaneous velocity of a particle: it tends to
infinity with space resolution tending to zero.

More specifically, in case of topological fermionic modes (in the quenched approximation)
one can utilize dispersion relations to argue that the volume occupied by the modes vanishes
indeed in the continuum limit. The physics behind is that large fluctuations of the topological
density are due to under-the-barrier transitions in the Euclidean space. Therefore, they do not
correspond to any physical intermediate states and are described by local, or subtraction terms
in field theory.

Another, and probably most interesting aspect is that dual formulations of YM theories
with large Nc predict existence of low-dimensional vacuum defects. One of the earliest of such
predictions is existence of domain walls, or 3d defects related to topology [3]. Although the
argumentation does not apply literally if Nc is not large, the basic geometrical constructions
could survive in the SU(2) case as well. Then, to uncover low-dimensional defects one needs
measurements with high resolution since only explicit lattice dependence distinguishes, say, 3d
defects from 4d excitations.
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