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Abstract

In the finite-temperature Yang-Mills theory we calculate the functional determinant for
fermions in the fundamental representation of SU(N) gauge group in the background of an
instanton with non-trivial holonomy at spatial infinity. This object, called the Kraan–van
Baal – Lee–Lu caloron, can be viewed as composed of N Bogomolny–Prasad–Sommerfeld
monopoles (or dyons). We compute analytically two leading terms of the fermionic deter-
minant at large separations.

1 Introduction

Speaking of the finite temperature one implies that the Euclidean space-time is compactified in
the ‘time’ direction whose inverse circumference is the temperature T , with the usual periodic
boundary conditions for boson fields and anti–periodic conditions for the fermion fields. In
particular, it means that the gauge field is periodic in time, and the theory is no longer invariant
under arbitrary gauge transformations, but only under gauge transformations that are periodical
in time. As the space topology becomes nontrivial the number of gauge invariants increases.
The new invariant is the holonomy or the eigenvalues of the Polyakov line that winds along the
compact ’time’ direction [1]

L = P exp

(

∫ 1/T

0
dtA4

)
∣

∣

∣

∣

∣

|~x|→∞

. (1)

This invariant together with the topological charge and the magnetic charge can be used for
the classification of the field configurations [2] , its zero vacuum average is one of the common
criteria of confinement.

A generalization of the usual Belavin–Polyakov–Schwartz–Tyupkin (BPST) instantons [3]
for arbitrary temperatures is the Kraan–van Baal–Lee–Lu (KvBLL) caloron with non-trivial
holonomy [4, 6, 5]. It is a self-dual electrically neutral configuration with topological charge 1
and arbitrary holonomy. It was constructed a few years ago by Kraan and van Baal [4] and Lee
and Lu [5] for the SU(2) gauge group and in [6] for the general SU(N) case; it has been named
the KvBLL caloron (recently the exact solutions of higher topological charge were constructed
and discussed [7]). In the limiting case, when the KvBLL caloron is characterized by the trivial
holonomy (meaning that (1) assumes values belonging to the group center Z(N) for the SU(N)
gauge group), it reduces to the periodic Harrington-Shepard [16] caloron known before. It is
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Figure 1: The action density of the SU(3) KvBLL caloron as function of z, t at fixed x = y = 0,
eigenvalues of A4 at spatial infinity are µ1 = −0.307T, µ2 = −0.013T, µ3 = 0.32T . It is periodic
in t direction. At large dyon separation the density becomes static (left, %1,2 = 1/T, %3 = 2/T ).
As the separation decreases the action density becomes more like a 4d lump (right, %1,2 =
1/(3T ), %3 = 2/(3T )). The axes are in units of inverse temperature 1/T .

purely SU(2) configuration and its weight was studied in detail by Gross, Pisarski and Yaffe
[2].

The KvBLL caloron in the theory with SU(N) gauge group on the space R3 × S1 can be
interpreted as a composite of N distinct fundamental monopoles (dyons) [17][18] (see fig. 1 and
fig. 2). It was proven in [6] and is shown in this paper explicitly, that the exact KvBLL gauge
field reduces to a superposition of BPS dyons, when the separation %i between dyons is large
(in units of inverse temperature). When the distances %l between all the dyons become small
compared to 1/T the KvBLL caloron reduces to the usual BPST instanton in its core region
(for explicit formulae see [4, 13]).

The KvBLL caloron may be relevant to the confinement-deconfinement phase transition in
the pure gauge theory [8] [9] as well as for the chiral restoration transition in finite-temperature
QCD with light fermions. In the latter case it is important to know the fermionic determinant,
which we calculate in this paper.

To construct the ensemble of calorons , one needs to know their quantum weights and moduli
space (zero modes). If there are massless fermions in the theory, the “gluonic” quantum weight

of the caloron should be multiplied by (Det′(i∇/ ))
Nf – a normalized and regularized product of

fermionic non-zero modes. The fermionic zero modes would also give a valuable contribution
to interactions inside the ensemble.

In ref. [10] the determinant for gluons and ghosts for the SU(2) Yang–Mills theory was
computed. It was extended to the SU(2) Yang-Mills theory with light fermions in [11]. So far
only a metric of the moduli space was known for the general SU(N) case [12] (its determinant
was analyzed in details in [13]). The fermionic zero-modes were studied in [14]. In this talk
we review our recent calculation of the fermionic determinant over non-zero modes to the
SU(N > 2) gauge group [15]. It may be more logical to generalize the result of [10] about the
ghost determinant to the arbitrary SU(N) first, but technically the computation of the non-
perturbative contribution of light fermions is simpler and that is why we decided to consider it
first.

As was already mentioned, to account for fermions we have to multiply the partition function

by
Nf
∏

j=1
Det(i∇/ + imj), where ∇/ is the spin-1/2 fundamental representation covariant derivative

in the background considered, and Nf is the number of light flavors. We consider only the
case of massless fermions here mj = 0. The operator i∇/ has zero modes [14] therefore a
meaningful object is Det′(i∇/ ) — a normalized and regularized product of non-zero modes.

In the self-dual background it is equal to
(

Det(−∇2)
)2

, where ∇ is the spin-0 fundamental
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covariant derivative [19]. In this work we calculate the asymptotics of the determinant for large
separations between N constituent dyons. As usual, our method of calculation is based on
calculating the variation of the determinant w.r.t. some parameter of the solution [23].

Let us sketch the structure of the paper. To make the paper more self-contained, in Sections
2 and 3 we collect the notations and review the ADHMN construction of SU(N) KvBLL caloron.

A peculiar feature of fields in the fundamental representation of gauge group is that they
feel the center elements of the group, hence there are N possible different background fields,
numbered by the integer k = 0..N−1. They are related by a non-periodic gauge transformation
(see Section 4.1 for detailes). In Section 4 we discuss the N possible background fields and the
boundary conditions for the fermionic fluctuations.

In Section 6 we present the currents corresponding to variation of the determinant. Using
these results we immediately write the result for the determinant up to an additive constant in
Section 6. To trace back the constant we shall take a special configuration of N far-separated
constituents and will subsequently reduce it to the SU(2) configuration, where we have already
calculated the determinant in [11]. To justify this approach we show rigorously in Section 4
that the SU(N) caloron can be considered as a superposition of SU(2) dyons and explicitly
show how some degenerate SU(N) configurations are reduced to the SU(N − 1) ones.

2 Notations

To help navigate and read the paper, we first introduce some notations used throughout. Ba-
sically we use the same notations as in Ref. [6]. In what follows we shall measure all quantities
in the temperature units and put T = 1. The temperature factors can be restored in the final
results from dimensions.

Let the holonomy at spatial infinity have the following eigenvalues

L = P exp

(

∫ 1/T

0
dtA4

)

|~x|→∞

= V diag
(

e2πiµ1 , e2πiµ2 . . . e2πiµN
)

V −1,
N
∑

m=1

µm = 0. (2)

We use anti-hermitian gauge fields Aµ = itaAaµ = i
2λ

aAaµ, [tatb] = ifabctc, tr(tatb) = 1
2δ
ab.

The eigenvalues µm are uniquely defined by the condition
∑N

m=1 µm = 0. If all eigenvalues
are equal up to the integer, implying µm = k/N − 1, m ≤ k and µm = k/N, m > k where
k = 0, 1, ...(N − 1), the holonomy belongs to the center of SU(N) group, and is said to be
“trivial”. By making a global gauge rotation one can always order the holonomy eigenvalues
such that

µ1 ≤ µ2 ≤ . . . ≤ µN ≤ µN+1 ≡ µ1 + 1, (3)

which we shall assume done. The eigenvalues of A4 in the adjoint representation, Aab4 = ifabcAc4,
are ±(µm − µn) and N − 1 zero ones. For the trivial holonomy all the adjoint eigenvalues are
integers. The difference between the neighboring eigenvalues in the fundamental representation
νm ≡ µm+1−µm determines the spatial core size 1/νm of the mth monopole whose 3-coordinates
will be denoted as ~ym, and the spatial separation between neighboring monopoles will be denoted
by

~%m ≡ ~ym − ~ym−1 = %m (sin θm cosφm, sin θm sinφm, cos θm), %m ≡ |~%m|. (4)

We call neighbors those dyons which correspond to the neighboring intervals in z variable (see
the next section), these dyons also turn out to be neighbors in the color space. With each

3-vector ~%m we shall associate a 2-component spinor ζ †αm so that for any m = 1...N :

ζ†αm ζmβ =
1

2π
(12%m − ~τ · ~%m)αβ . (5)

This condition defines ζαm up to N phase factors eiψm/2. These spinors are used in the construc-
tion of the caloron field. These ψm has the meaning of the U(1) phase of the mth dyon. For the
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Figure 2: The action density of the SU(3) KvBLL caloron as function of z, x at fixed t = y =
0. At large separations %1,2,3 the caloron is a superposition of free BPS dyon solutions (left,
%1 = 2.8/T, %2,3 = 2/T ). At small separations they merge (right, %1 = 1/T, %2,3 = 0.54/T ).
The eigenvalues of A0 at spatial infinity are the same as in Fig. 1.

trivial holonomy, the KvBLL caloron reduces to the Harrington–Shepard periodic instanton at
non-zero temperatures and to the ordinary Belavin–Polyakov–Schwartz–Tyupkin instanton at
zero temperature. Instantons are usually characterized by the scale parameter (the “size” of
the instanton) ρ. It is directly related to the dyons positions in space, actually to the perimeter
of the polygon formed by dyons,

ρ =

√

√

√

√

1

2πT

N
∑

m=1

%m ,
N
∑

m=1

~%m = 0. (6)

In the next Section we shall show how the SU(N) caloron gauge field depends on these
parameters and describe its ADHMN construction.

3 ADHMN construction for the SU(N) caloron

Here we remind the Atiyah–Drinfeld–Hitchin–Manin–Nahm (ADHMN) construction for the
SU(N) caloron [6] and adjust it to our needs.

The basic object in the ADHMN construction [21, 20] is the (2 +N)× 2 matrix ∆ linear in
the space-time variable x and depending on an additional compact variable z belonging to the
unit circle:

∆K
β (z, x) =

{

λmβ (z) , K = m, 1 ≤ m ≤ N,

(B(z)− xµσµ)
α
β , K = N + α, 1 ≤ α ≤ 2,

(7)

where α, β = 1, 2 and m = 1, . . . , N ; σµ = (i~σ, 12). As usual, the superscripts number rows of a
matrix and the subscripts number columns. The functions λmβ (z) forming an N×2 matrix carry
information about color orientations of the constituent dyons, encoded in the N two-spinors ζ:

λmβ (z) = δ(z − µm)ζmβ . (8)

The quantities ζmβ transform as contravariant spinors of the gauge group SU(N) but as covariant
spinors of the spatial SU(2) group. The 2×2 matrix B is a differential operator in z and depends
on the positions of the dyons in the 3d space ~ym and the overall position in time ξ4 = x4:

Bα
β (z) =

δαβ∂z

2πi
+
Âαβ(z)

2πi
(9)

with
Â(z) = Aµσµ, ~A(z) = 2πi ~ym(z), A4 = 2πi ξ4, (10)
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where for z inside the interval µm ≤ z ≤ µm+1, we define ~y(z) = ~ym to be the position of the
mth dyon with the inverse size νm ≡ µm+1 − µm.

The gauge field of the caloron can be constructed in the following way. One has to find N
quantities vKn (x), n = 1...N,

vKn (x) =

{

v1m
n (x) , K = m, 1 ≤ m ≤ N,

v2α
n (z, x) , K = N + α, 1 ≤ α ≤ 2,

(11)

which are normalized independent solutions of the differential equation

λ†
α
m(z)v1m

n + [B†(z) − xµσ
†
µ]
α
βv

2β
n (z, x) = 0, v†1ml v1l

n +

∫ 1/2

−1/2
dz v†2mα v2α

n = δmn , (12)

or, in short hand notations,
∆†v = 0, v†v = 1N . (13)

Note that only the lower component v2 depends on z. Once v1,2 are found, the caloron gauge
field Aµ is an anti-Hermitian N ×N matrix whose matrix elements are simply

(Aµ)
m
n = v†1ml ∂µv

1l
n +

∫ 1/2

−1/2
dz v†2mα ∂µv

2α
n or Aµ = v†∂µv. (14)

The gauge field is self-dual if
(∆†∆)αβ ∝ δ

α
β . (15)

It is important that there is a U(1)-internal gauge freedom. For an arbitrary function U(z),
such that |U(z)| = 1 a new operator

∆K
U,β(z, x) =

{

λ(z)mβ U(z) , K = m, 1 ≤ m ≤ N,

U †(z)(B(z) − x)αβU(z) , K = N + α, 1 ≤ α ≤ 2,
(16)

can be equally well used in the construction above.

3.0.1 ADHM Green’s function

One can define the scalar ADHMN Green function satisfying

(∆†∆)αβf(z, z′) = δαβ δ(z − z
′). (17)

From eq.(15) one can deduce that the N two-spinors ζmα defined in eq.(8) are associated with
~%m ≡ ~ym − ~ym−1 according to eq.(5).

Eq.(17) is in fact a Shrödinger equation on the unit circle:
[

(

1

2πi
∂z − x0

)2

+ r(z)2 +
1

2π

∑

m

δ(z − µm)%m

]

f(z, z′) = δ(z − z′) (18)

where r(z) ≡ |~x − ~y(z)|. This equation can be solved by means of different methods [22]. We
shall use the solution in the form found in [13]

f(z, z′) = sm(z)fmns
†
n(z

′) + 2πs(z, z′)δ[z][z′] (19)

we denoted [z] ≡ m if µm ≤ z < µm+1. The functions appearing in eq.(19) are

sm(z) = e2πix0(z−µm) sinh[2πrm(µm+1 − z)]

sinh(2πrmνm)
δm[z]

+e2πix0(z−µm) sinh[2πrm−1(z − µm−1)]

sinh(2πrm−1νm−1)
δm,[z]+1, (20)

s(z, z′) = e2πix0(z−z′) sinh
(

2πr[z](min{z, z′} − µ[z])
)

sinh
(

2πr[z](µ[z]+1 −max{z, z′})
)

r[z] sinh
(

2πr[z]ν[z]

) .(21)
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In fact s(z, z′) is a single dyon Green’s function. N ×N matrix fnm = f(µn, µm) is defined by
its inverse fmn = F−1

mn

2πFmn = δmn [coth(2πrmνm)rm + coth(2πrm−1νm−1)rm−1 + %m]−
δm+1,nrme

−2πix0νm

sinh(2πrmνm)

−
δm,n+1rne

2πix0νn

sinh(2πrnνn)
. (22)

Eq.(19) is convenient since the main dependence on z, z ′ is factorized. Moreover a single dyon
limit is manifested.

3.0.2 Gauge field through fmn

It was shown by Kraan and van Baal [6] that instead of eq.(14) one can use:

Amnµ =
1

2
φ

1/2
mkζ

k
αη̄

a
µν(τ

a)αβζ
†β
l ∂νfklφ

1/2
ln +

1

2

(

φ
1/2
mk∂µφ

−1/2
kn − ∂µφ

−1/2
mk φ

1/2
kn

)

(23)

where
φ−1

mn = δmn − ζ
m
α fmnζ

†α
n . (24)

We see that only fmn ≡ f(µm, µn) is needed to calculate Aµ.

4 KvBLL caloron gauge field, basic features

4.1 Periodicity of the KvBLL caloron

From eq.(23) one can see that Aµ is not periodical in time as it should be. More explicitly for
any integer k

Aµ(x0 + k, ~x) = g(k)Aµ(x0, ~x)g†(k) (25)

where g is a diagonal matrix gmn(k) = δmne
2πikµn . To prove (25) it is enough to see from (22)

that for integer k
fmn(k, ~x) = fmn(0, ~x)e2πik(µm−µn) . (26)

Now we can easily make the gauge field periodic by making a time dependent gauge transfor-
mation

Aper
µ = g†(x0)∂µg(x0) + g†(x0)Aµg(x0). (27)

However this is not the only possibility to make the field periodic in time. Instead of g(x0) one

can use gk(x0) ≡ exp[x0diag(2πi(µ1 + k/N), . . . , 2πi(µN + k/N − 1))] as g(n)g†k(n) ∈ ZN is an
element of the center of the SU(N) gauge group. Correspondingly we denote

Akµ = g†k(x0)∂µgk(x0) + g†k(x0)Aµgk(x0) (28)

For different k, the Akµ cannot be related by a periodical gauge transformation. In particular the
fermionic determinant depends explicitly on a particular choice of k = 0, . . . , N − 1. However
the expressions for Akµ are related by simply changing the holonomy as µkn = µn + k

N in all the
formulas, as it is shown in Appendix A to [15].
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4.2 KvBLL caloron with exponential precision

The caloron gauge field (23) has an important feature: it is abelian with the exponential
precision, i.e. neglecting terms of the type e−2πµiri and e−2πνiri one obtains [13] in the periodical
gauge (27)

A4mn = 2πiµmδmn +
i

2
δmn

(

1

rm
−

1

rm−1

)

, (29)

~Amn = −
i

2
δmn

(

1

rm
+

1

rm−1

)

√

(%m − rm + rm−1)(%m + rm − rm−1)

(%m + rm + rm−1)(rm + rm−1 − %m)
~eϕm

where ~eϕm ≡
~rm−1×~rm
|~rm−1×~rm| .

4.3 Reduction to a single BPS dyon

In [6] it was shown that in the domain near the l-th dyon where rl � rn for all n 6= l and
the perimeter

∑

n %n � 1 is large, the action density of the KvBLL caloron reduces to that of
a single dyon (with the O(1/rn) precision). Note that the cores of dyons may overlap and in
particular when one dyon blows up and its size 1/νl tends to infinity all the other dyons do not
lose their shape. We will use this fact to calculate the constant in the resulting expression for
the determinant.

In Appendix C to [15] we show explicitly how the KvBLL caloron looks like in the vicinity
of a dyon for the case of well-separated constituents (i.e. when eνnrn � 1 for all n 6= i ).

4.4 Reduction to the SU(N − 1) configuration

In this Section we will show that the SU(N) caloron gauge field can be continuously deformed
into an SU(N − 1) one. This fact allows one to calculate the determinant by induction as the
determinant for the SU(2) gauge group is known [11].

Let us consider an SU(N) caloron when the size of the l-th dyon becomes infinite (or νl = 0,
meaning µl = µl+1). We shall prove that when the center of the “disappeared” dyon l is lying on
the straight line connecting the two neighboring dyons l−1 and l+1, the resulting configuration
is an SU(N − 1) caloron solution having the same dyon content (except the l-th one) at the
same positions in space. In [6] this statement was verified for the action density. Here we show
this explicitly for the gauge field and find the gauge transformation that imbeds the SU(N −1)
gauge field into the upper-left (N − 1)× (N − 1) block of the SU(N) matrix.

It is easy to see from the definition of the Green’s function (18) that at νl = 0 one has
fln = fl+1n, fnl = fnl+1. Let us denote with tilde the elements of the SU(N − 1) construction.
One can see from the definition (18) that

f̃nm = fnm, n,m ≤ l,

f̃nm = fn+1m+1, n,m > l, (30)

f̃nm = fn+1m, n > l, m ≤ l,

f̃nm = fnm+1, m > l, n ≤ l .

Since ~%l and ~%l+1 are parallel one can write

ζ̃αn = ζαn , n < l

ζ̃αn = ζαn+1, n > l (31)

ζ̃αl =
√

%l+%l+1

%l
ζαl ,

and this is consistent with the constraint (5).

7



Let us write down explicitly the gauge transformation relating the SU(N) and the SU(N−1)
constructions. The crucial point is the following identity

ζnαfnmζ
†β
m = (U †ζ̃αf̃ ζ̃

†βU)nm (32)

where U is a unitary matrix given by

Umn = δmn, m < l

Umn = δmn+1, m > l + 1 (33)

Uln = δln
√

%l

%l+%l+1
− δNn

√

%l+1

%l+%l+1

Ul+1n = δln
√

%l+1

%l+%l+1
+ δNn

√

%l

%l+%l+1

It is assumed here that the SU(N − 1) construction in context of the SU(N) construction is
simply appended with zeroes at the end to get the needed matrix size. Since the gauge field
(23) is expressed entirely through the combination (32), U is a unitary gauge transformation
matrix that transforms SU(N) configuration given by eq.(23) into SU(N − 1) configuration
given by the same eq.(23). We see that ζl is consistently determined in terms of other N-1 ζ’s
thus reducing by 4 the number of independent degrees of freedom.

5 Method of computation

In calculating the small oscillation determinant, Det(−∇2), where ∇µ = ∂µ +Aµ and Aµ is the
SU(N) caloron field [6] in the fundamental representation, we employ the same method as in
[11, 10, 23]. Instead of computing the determinant directly, we first evaluate its derivative with
respect to a parameter P, and then integrate the derivative using the known determinant for
the SU(2) case. In case of fermions one should consider the determinant over anti-periodical
fluctuations. In Appendix A to [15] we consider a more general problem with fluctuations
periodical up to the phase factor eiτ , and calculate the dependence of the determinant on τ .
However for simplicity we can put τ = 0, i.e. consider periodical fluctuations. The dependence
on τ will be restored in the final result. Moreover, let us note that the dependence of the
determinant on the parameter k of the gauge field (see (28)) is the same as the dependence on
τ (k can be absorbed in τ as τ → τ + 2πk/N or vice versa).

If the background field Aµ depends on some parameter P, a general formula for the derivative
of the determinant with respect to P is

∂ log Det(−∇2[A])

∂P
=−

∫

d4xTr (∂PAµ Jµ) (34)

where Jµ is the vacuum current in the external background, determined by the Green function:

Jabµ ≡ (δac δ
b
d∂x−δ

a
c δ
b
d∂y+A

acδbd+A
dbδac )G

cd(x, y)
∣

∣

∣

y=x
or simply Jµ ≡

−→
∇µG + G

←−
∇µ. (35)

Here G is the Green’s function or the propagator of spin-0, fundamental representation particle
in the given background Aµ, defined by

−∇2
xG(x, y) = δ(4)(x− y). (36)

The periodic propagator can be easily obtained from it by a standard procedure:

G(x, y) =

+∞
∑

n=−∞

G(x4, ~x; y4 + n, ~y). (37)

8



Eq.(34) can be verified by differentiating the identity log Det(−D2) = Tr log(−D2). The back-
ground field Aµ in eq.(34) is taken in the fundamental representation, as is the trace.

The Green functions in the self-dual backgrounds are generally known [24, 20] and are built
in terms of the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction [21]

G(x, y) =
v†(x)v(y)

4π2(x− y)2
. (38)

In what follows it will be convenient to split it into two parts:

G(x, y) = Gr(x, y) + Gs(x, y),

G(x, y)s ≡ G(x, y), G(x, y)r ≡
∑

n6=0

G(x4, ~x; y4 + n, ~y) . (39)

The vacuum current (35) can be also split into two parts, “singular” and “regular”, in accordance
to which part of the periodic propagator (39) is used to calculate it:

Jµ = J r
µ + J s

µ. (40)

Note that if we leave only J s
µ in the r.h.s. of eq.(34) then in the l.h.s. we will get a derivative

of the logarithm of the determinant over all fluctuations (not only periodical). Therefore both

∫

d4x Tr(δAµJ
s
µ) and

∫

d4x Tr(δAµJ
r
µ) (41)

are full variations of certain functional F s[A], F r[A], such that

∂ log Det(−∇2[A])

∂P
= ∂PF

s[A] + ∂PF
r[A]. (42)

By definition F s[A] is the determinant over arbitrary fluctuations. This defines uniquely F r[A].
In fact F r[A] is particularly simple and it is calculated exactly in Appendix 2 to [15]. The result
is simply

F r[A] =
∑

n

(

P ′′(2πµn)
π%n
4
− P ′(2πµn)

π

6
(y2
n − y

2
n−1) + P (2πµn)

V

2

)

, (43)

where V is the space volume, P (v) = v2(2π−v)2/(12π2) is the 1-loop effective potential [2, 25].
In the SU(2) case this simple exact expression was conjectured in [11] from numerical results ,
and only in [15] was it proved analytically.

As for F s[A], we are only able to calculate this quantity for large dyon separations. The
method is the same as in [10, 11]. We divide the space into the “core” and “far” domains.
The first contains well separated dyons and consists of N balls of radius R � 1/νn. In the
core region the r.h.s. of eq.(34) is given by the simple expression computed on a single BPS
dyon with the O(1/%n) precision. In the far domain the r.h.s. of eq.(34) can be computed with
exponential precision. The review of calculations is presented in the next section.

6 Determinant at large separations between dyons

Let us consider the range of the moduli space, where the dyon cores do not overlap. To calculate
the variation of the determinant, it is convenient to divide the space into N core domains (N
balls of radius R � 1/νn), and the remaining far region. Integrating the total variation of
the determinant we shall get the determinant up to the constant that does not depend on the
caloron parameters since the considered region in the moduli space is connected.
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6.1 Core domain

In this section we calculate the r.h.s. of eq.(34) in the vicinity of the mth dyon center. As the
distances to other dyons are large we can use simple formulae obtained for a single BPS dyon in
[11]. We only have to make a remark that in [11] the calculations were made in the periodical
gauge. In the present case the gauge is not periodical. One can see that we have to make a
U(1) non-periodical gauge transformation (this results in adding a constant proportional to a
unit 2 × 2 matrix to the BPS gauge field, and thus naively the formulae are not applicable.
However in Appendix A of [15] it is shown that only the IR-infinite terms change under this
U(1) transformation (i.e. R-dependent terms) and the main IR-finite part that contributes
to the caloron determinant is the same. We can conclude that the single dyon determinant
depends nontrivially only on νm = µm+1 − µm. All other changes affect only the IR-infinite
terms:

∂P log Det(−D2)near mth dyon = ∂P

(

cdyonνm −
log(νmR)

6
νm

)

+ (R−dependent terms)(44)

where P = µn or ~yn. Adding up all core contributions we obtain

∂P log Detcore(−D
2) = −∂P

(

∑

n

νn log(νnR)

6

)

+ (R−dependent terms). (45)

The constant cdyon has disappeared here because
∑

νm = 1, and so it does not enter the varia-
tion. R-dependent terms are exactly cancelled when we sum with the far region contribution,
since the total result cannot depend on the choice of R.

6.2 Far domain

Now we consider the far domain, i.e. the region of space outside dyons’ cores. We need to
compute the vacuum current (35) with exponential precision. However in fact we can obtain
the result instantly using the fact that the gauge field is diagonal with the same precision, and
for all µn 6= 0 the Green’s function (37) falls off exponentially and thus the result can be read
off from the SU(2) one. For periodical boundary conditions we have

jmn4 = δmn
ism
2
P ′

[

1

2

(

4πµm +
1

rm
−

1

rm−1

)]

, (46)

where sm = µm

|µm| . All the other components are zero with exponential precision. We have also
checked this by a direct computation. It is rather involved and we do not include it in this
paper. We can immediately conclude from eq.(29) for the gauge field that

∂P log Detfar(−D
2) =

∫

far
∂P

1

2

∑

n

P

[

1

2

(

4πµn +
1

rn
−

1

rn−1

)]

(47)

= ∂P
∑

n

(

P ′′(2πµn)
π%n
4
− P ′(2πµn)

π

6
(y2
n − y

2
n−1) + P (2πµn)

V

2

)

+ (R−dependent terms).

We have used

∫
(

1

rn
−

1

rn−1

)

d3x =
2π

3
(y2
n−1−y

2
n),

∫
(

1

rn
−

1

rn−1

)2

d3x = 4π%n+(R−dependent terms)

(48)
for the spherical box centered at the origin. The second equality in (47) is valid when the
variation does not involve changing the far region itself.
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6.3 The result

From eqs.(45,47) we can conclude that for large dyons’ separations, %m � 1/νm + 1/νm−1, the
SU(N) caloron determinant is

log Det(−D2) =
∑

n

(

P ′′(2πµn)
π%n
4
− P ′(2πµn)

π

6
(y2
n − y

2
n−1) + P (2πµn)

V

2
−
νn log νn

6

)

+cN +
1

6
log µ (49)

where µ is the Pauli–Villars mass. In the next section we shall show that the constant cN is the
same for all N and thus can be taken from the SU(2) result [11]: cN = 1

18 −
γE

6 −
π2

216 +α(1/2)

where the constant α(1/2) = − 17
72 + γE

6 + log π
6 − ζ′(2)

π2 has been introduced by ’t Hooft [26].

6.4 The constant

We now know the exact expression (43) for the regular current contribution to the variation of
the determinant, and we know the expression (49) for the determinant in the case of far dyons
with cores that do not overlap. To integrate the variation we need to know the integration
constant cN . It was calculated for the SU(2) case in [11], so, to get the constant cN we will
start the integration over P = ν from the degenerate case ν = 0, when the SU(N) configuration
is reduced to the SU(N − 1) KvBLL caloron. In fact we will show that cN does not depend on
N .

In [6] and Section 4.4 it was shown that when two eigenvalues µl and µl+1 of the holonomy
coincide (i.e. when the lth dyon becomes infinitely large), and ~yl−1, ~yl, ~yl+1 belong to the same
line, the SU(N) configuration reduces to that of the SU(N − 1) gauge group.

The problem is that the contribution of the singular current to the variation is not known
when νl becomes small, because it means that the lth dyon overlaps the others. We choose ν1 as a
parameter P and integrate from the values of ν1 where eq.(49) is applicable, i.e. ν = κ/L� 1/L
(we assume all %n ∼ L� 1 and νn6=l ∼ 1). The problem may arise in the small region νl . L−1

where dyons start to overlap and the integrand ∂ν1F
s is unknown. However it is sufficient to

show that
|∂ν1F

s| < C logL (50)

to prove that the contribution from this problematic region is small in the limit L→∞.
Again we divide all space into two parts - the core region and the far region, but this time the

core region consists of N − 1 balls of radius εL� 1/νn6=l, ε� 1, surrounding finite size dyons.
Inside the core domain we again can use a single dyon expression for the singular contribution.
It was calculated in [23, 10] and diverges logarithmically, and we can estimate it as C logL.
In the far domain we can drop all terms e−νnrn for n 6= l. Let us call it the semi-exponential
approximation. As we shall show in the next paragraph, in this domain ∂ν1F

s is a function of
the form

∫

d3x ν3
1G(rnν1, %nν1) and thus we have to compute

∫ κ/L

0
dν1

∫

far
d3x ν3

1G(rnν1, %nν1). (51)

To estimate this expression it is convenient to make the following substitution: ~x = L~x0,
~yn = L~y0

n, νl = ν0
l /L, eq.(51) becomes

1

L

∫ κ

0
dν0

1

∫

far
d3x0 ν0 3

1 G(r0
nν

0
1 , %

0
nν

0
1) (52)

Since the domain of integration and the integrand do not depend on L, we see that the far
domain contribution tends to zero as L→∞. Therefore only the core domain contributes, and
we arrive at eq.(50) for large L.
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Let us prove that ∂ν1F
s = −

∫

d4x∂ν1tr[Aµj
s
µ] indeed has the form

∫

d3x ν3
1G(rnν1, %nν1) in

the semi-exponential approximation. We can reconstruct dimensions and as the gauge field is
static in this approximation, the singular current and the gauge potential cannot depend on T
explicitly (as opposed to the regular current where the temperature dependence is manifest in
the definition (39)). It must be a spatial integral of the function of dimensionless combinations
νn%m, νnym times ν3

1 , since F s is dimensionless. Moreover F s is independent on νn6=l by
construction. To demonstrate the latter, consider first the gauge field. From eq.(23) we see
that the gauge field can be written entirely in terms of fnm which by itself does not depend on
νn6=l in the semi-exponential approximation as can be easily seen from eq.(22). The singular
current is given by the equation (see, for example, [10],[23])

jsµ =
1

12π2
v2(z)

†f(z, z′)σµ(B(z′)− xµσµ)
†f(z′, z′′)v2(z

′′)− h.c. (53)

where v2 is written in (11), and integrations over all z variables are assumed in eq.(53). The
possible νn6=l dependence can arise from integration over z the piece-wise function f in eq.(53).
However f(z, z′) (see eq.(19)) is exponentially dumped as e−2πri>1(z−µi) when one or both of
its arguments are outside the interval [µl, µl+1], therefore the integrals of piece-wise functions
over these outside regions (e.g. [µl+1, µl+2]) can be extended to infinity (e.g. [µl+1,∞)) with
exponential accuracy. That is why no dependence on νn6=l arises. This completes the proof.

Thus we have shown that although eq.(49) is valid for well separated dyons, we can use it
even when one of the dyons becomes arbitrarily large. Taking µl+1 = µl and all ~yl−1, ~yl, ~yl+1

along the same line, we see from

P ′′(2πµl)%l + P ′′(2πµl+1)%l+1 = P ′′(2πµl)%̃l, (54)

P ′(2πµl)(y
2
l − y

2
l−1) + P ′(2πµl+1)(y

2
l+1 − y

2
l ) = P ′(2πµl)(y

2
l+1 − y

2
l−1) (55)

that eq.(49) for SU(N) reduces to that for SU(N − 1) with cN−1 = cN .

6.5 log %
%

improvement.

We now calculate the first correction to the large separation asymptotics of the determinant
(49). As we know from the SU(2) result it is a log %

% correction. The correction of this special
form can come from the far region only since the core region generates only power corrections
O(1/%).

From eq.(47) we can see that the contribution of this region is determined by the potential
energy. We take a 3d dilatation α (such that ~yn = α~y0

n) as a parameter. We have:

∂ log Det(−∇2)

∂α

∣

∣

∣

∣

far

=

N
∑

n=1

∫

d3x ∂α
1

2
P

(

1

2

[

4πµn +
1

rn
−

1

rn−1

])

. (56)

The integration range for each n is fixed to be the 3d volume with two balls (n-th and
n− 1-th) of radius R removed. The leading correction comes from the integral

∫

∂α

(

1

rn
−

1

rn−1

)4

d3x =
32π log(%n/R)

α%n
+O(1/r12).

that arises when one Taylor expands P . Integrating this variation over α we get the correction
to the determinant (49): −

∑N
n=1

log %n

12π%n
.

7 Conclusions and the final result

In this paper we have considered the fundamental-representation fluctuation (or fermionic)
determinant over non-zero modes in the background field of the topological charge 1 self-dual
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solution at finite temperature, called the KvBLL caloron. This solution can be viewed as
consisting of N dyons. We have managed to calculate analytically the determinant for large
dyon separations, arbitrary solution parameter k (see (28)) and arbitrary boundary condition
for fluctuations:

a(~x, 1/T ) = e−iτa(~x, 0).

The result is

log Detτ (−D2[Akµ]) =
∑

n

(

P ′′(2πµk,τn )
π%nT

4
− P ′(2πµk,τn )

πT 2

6
(y2
n − y

2
n−1) + P (2πµk,τn )

V T 3

2

−
νn log νn

6
−

log %n
12π%n

)

+ cN +
1

6
log µ/T +O(1/%) (57)

where

µk,τn = µn +
k

N
+

τ

2π
; cN = −

13

72
−

π2

216
+

log π

6
−
ζ ′(2)

π2
(58)

In the above expression k = 0..N − 1 corresponds to the element of the center of the SU(N)
group, it influences the result for the fundamental determinant. The anti-periodical fluctuations
which are the case for fermions, can be obtained by taking τ = π. Therefore for the fermionic
determinant log Det′(i∇/ ) the result is twice the eq.(57) with τ = π.
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