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Abstract

Chiral soliton approach is used to describe spectrum of exotic and nonexotic baryons.
Strangeness contents of baryons are calculated within rigid rotator model for arbitrary
number of colors. Comparison of different variants of the model (rigid rotator and rigid
oscillator) at large number of colors is performed. The behavior of strangeness content as
function of Nc reveals a problem of extrapolation from large Nc to Nc = 3. Results of chiral
soliton approach are compared with simple quark model.

1 Introduction

Present talk is based on the work [1]. Within chiral soliton model the spectrum of exotic and
nonexotic baryon states can be obtained by means of quantization of the collective motion of
starting classical field configuration. Explicit calculation of the strangeness contents of exotic
and nonexotic baryon states at arbitrary number of colors allows to perform comparison of
different quantization schemes: rigid rotator and rigid oscillator models. Another question is
comparison of the results of the chiral soliton approach and simple quark model.

2 Rigid rotator model

The Lagrangian of the chiral soliton model in the simplest case has the following form:

L = −F 2
π

16
TrL2

µ +
1

32e2
Tr[LµLν ]

2 +
F 2

πm2
π

16
Tr(U + U † − 2), (1)

where U is unitary matrix incorporating the chiral fields, Lµ = ∂µUU †, mπ and Fπ are pion
mass and decay constant, e is the Skyrme parameter defining the weight of the 4-th order term.

In the collective coordinates quantization procedure [2], the angular velocities of rotation of
soliton in the SU(3) configuration space are introduced:

U → A(t)UA(t)†, A†(t)Ȧ(t) = −iωaλa/2, (2)

λa being Gell-Mann matrices, a = 1, ... , 8. The rotational part of the lagrangian is quadratic in
angular velocities with two coefficients, isotopical moment of inertia (Θπ) and flavor moment
of inertia (ΘK):

Lrot =
1

2
Θπ(ω2

1 + ω2
2 + ω2

3) +
1

2
ΘK(ω2

4 + ... + ω2
7) −

NcB

2
√

3
ω8. (3)
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Figure 1: Antidecuplet, 27-plet and 35-plet of baryons. Large full circles show the exotic states,
small circles show the cryptoexotic states.

Linear in angular velocity term originates from the Wess-Zumino-Witten term in the action of
the model [3]. The hamiltonian of the model can be obtained by means of canonical quantization
procedure,

H = Mcl +
1

2Θπ
R

2 +
1

2ΘK

[

C2(SU3) −R
2 − N2

c B2

12

]

, (4)

where operators Ra = ∂L/∂ωa, the second order Casimir operator for the SU(3) group
C2(SU3) =

∑8
a=1 R2

a, the second order C. o. for the SU(2) group C2(SU2) = R
2 =

∑3
a=1 R2

a.
For the (p, q)-multiplet, C2(SU3) = (p2 + q2 + pq)/3 + p + q, C2(SU2) = J(J + 1), where J is
so called right or body fixed isospin, which for one-baryon configurations is equal to the spin of
baryon. In addition to usual octet and decuplet of baryons, it is possible to consider multiplets
of pentaquark baryons, antidecuplet, 27-plet and 35-plet (see fig. 1).

The mass splitting inside of SU(3)-multiplets of baryons is defined by the flavor symmetry
breaking term in the lagrangian. In the first order in flavor symmetry breaking mass mK this
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term has the following form:

LFSB =
m2

K − m2
π

24
Tr(1 −

√
3λ8)(U + U † − 2), (5)

and resulting mass formula for the quantized states in the rigid rotator approximation is

M = Mcl +
J(J + 1)

2Θπ
+

1

2ΘK

[(

p2 + q2 + pq

3
+ p + q

)

− J(J + 1) − N2
c

12

]

+ ∆MFSB, (6)

∆MFSB = Γ(m2
K − m2

π)CS .

CS here is strangeness content of baryon. If we parametrize the matrix of collective coordinates
A ∈ SU(3) as

A = A1(SU2)e
iνλ4A2(SU2)e

iρλ8/
√

3, (7)

so that the only flavor changing parameter within this parametrization is ν, the angle of rotation
in ”strange” direction, then strangeness content

CS =
1

2

〈

Ψ(ν)|sin2ν|Ψ(ν)
〉

. (8)

Strangeness content for states of the octet, decuplet, antidecuplet, 27-plet and 35-plet of
baryons at arbitrary number of colors is given in tables 1, 2. It can be seen from the tables that
for the fixed value of strangeness, CS decreases as 1/Nc with increasing Nc — in agreement
with the fact that fixed number of quarks are strange, whereas total number of constituent
quarks is Nc, or Nc + 2 for pentaquarks. Also it can be seen that the parameter for 1/Nc

expansion of strangeness content is 7/Nc for octet, 9/Nc for decuplet and antidecuplet, 11/Nc

for 27-plet, and so on, so the expansion parameter is large for Nc = 3. From this it follows that
1/Nc expansion methods for exotic and nonexotic baryons are questionable, because there is a
problem of extrapolation from the large Nc limit to the real value Nc = 3.

3 Rigid oscillator model

In the rigid oscillator model [4] different parametrization of matrix A is used:

A(t) = ASU(2)(t)S(t), (9)

where matrix S(t) = eiD, D =
∑7

a=4 daλa. Two-component spinor

D =
1√
2

(

d4 − id5

d6 − id7

)

(10)

is deviation of starting SU(2) soliton into ”strange” direction, which is believed to be small.
The hamiltonian is of the oscillator type. For one-baryon systems

H = Mcl + 4ΘKΠ†Π +

(

Γm2
K +

N2
c

16ΘK

)

D†D, (11)

where Π is momentum canonically conjugate to variable D. After diagonalization the hamilto-
nian can be written in terms of flavor and antiflavor creation operators and flavor and antiflavor
excitation energies:

H = Mcl + ω−a†a + ω+b†b, (12)

ω− =
Nc

8ΘK
(µ − 1), ω+ =

Nc

8ΘK
(µ + 1), µ =

√

1 +
16ΘKΓm2

K

N2
c

.
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[p, q] CS(N) CS(N = 3)

[1, (N − 1)/2]

S = 0, I = 1/2 2(N + 4)/[(N + 3)(N + 7)] 7/30
S = −1, I = 1 (3N + 13)/[(N + 3)(N + 7)] 11/30
S = −1, I = 0 3/(N + 7) 9/30
S = −2, I = 1/2 4/(N + 7) 12/30

[3, (N − 3)/2]

S = 0, I = 3/2 2(N + 4)/[(N + 1)(N + 9)] 7/24
S = −1, I = 1 (3N + 7)/[(N + 1)(N + 9)] 8/24
S = −2, I = 1/2 (4N + 6)/[(N + 1)(N + 9)] 9/24
S = −3, I = 0 5/(N + 9) 10/24

[0, (N + 3)/2]

S = +1, I = 0 3/(N + 9) 6/24
S = 0, I = 1/2 (4N + 9)/[(N + 3)(N + 9)] 7/24
S = −1, I = 1 (5N + 9)/[(N + 3)(N + 9)] 8/24
S = −2, I = 3/2 (6N + 9)/[(N + 3)(N + 9)] 9/24

Table 1: Strangeness contents of states of the octet, decuplet and antidecuplet of baryons at
arbitrary number of colors. Table from paper [1].

[p, q] CS(N) CS(N = 3)

[2, (N + 1)/2]

S = +1, I = 1 (3N + 23)/[(N + 5)(N + 11)] 32/112
S = 0, I = 3/2 (4N 2 + 65N/2 − 3/2)/[(N + 1)(N + 5)(N + 11)] 33/112
S = 0, I = 1/2 (4N + 24)/[(N + 5)(N + 11)] 36/112
S = −1, I = 2 (5N 2 + 39N − 26)/[(N + 1)(N + 5)(N + 11)] 34/112
S = −1, I = 1 (5N 2 + 33N + 8)/[(N + 1)(N + 5)(N + 11)] 38/112
S = −1, I = 0 5/(N + 11) 5/14
S = −2, I = 3/2 (6N 2 + 38N − 8)/[(N + 1)(N + 5)(N + 11)] 40/112
S = −2, I = 1/2 (6N + 7/2)/[(N + 1)(N + 11)] 43/112
S = −3, I = 1 (7N + 2)/[(N + 1)(N + 11)] 46/112

[4, (N − 1)/2]

S = +1, I = 2 (3N + 25)/[(N + 3)(N + 13)] 34/96
S = 0, I = 5/2 (4N 2 + 85N/3 − 79)/[(N − 1)(N + 3)(N + 13)] 21/96
S = 0, I = 3/2 (4N + 24)/[(N + 3)(N + 13)] 36/96
S = −1, I = 2 (5N 2 + 74N/3 − 67)/[(N − 1)(N + 3)(N + 13)] 26/96
S = −1, I = 1 (5N + 23)/[(N + 3)(N + 13)] 38/96
S = −2, I = 3/2 (6N 2 + 21N − 55)/[(N − 1)(N + 3)(N + 13)] 31/96
S = −2, I = 1/2 (6N + 22)/[(N + 3)(N + 13)] 40/96
S = −3, I = 1 (7N 2 + 52N/3 − 43)/[(N − 1)(N + 3)(N + 13)] 36/96
S = −3, I = 0 7/(N + 13) 42/96
S = −4, I = 1/2 (8N − 31/3)/[(N − 1)(N + 13)] 41/96

Table 2: Strangeness contents of states of the 27-plet (J = 3/2) and 35-plet (J = 5/2) of
baryons at arbitrary number of colors. Table from paper [1].
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Also there is O(1/Nc) contribution, which is expressed in terms of the hyperfine splitting con-
stants, different for flavor and antiflavor:

∆E =
J(J + 1)

2Θπ
+

1

2Θπ

{

(c − 1)[J(J + 1) − I(I + 1)] + (c̄ − c)IS(IS + 1)
}

, (13)

J is the spin of baryon, I — isospin, IS = |S|/2. For flavor

c = 1 − 4ΘπΓm2
K

N2
c

+ O(m4
K), c̄ = 1 − 8ΘπΓm2

K

N2
c

+ O(m4
K), (14)

for antiflavor

c = 1 − Θπ

ΘK
+

4ΘπΓm2
K

N2
c

+ O(m4
K), c̄ = 1 +

2Θπ

ΘK
− 24ΘπΓm2

K

N2
c

+ O(m4
K). (15)

4 Comparison of RR and RO models in large Nc limit

We can compare results of the rigid rotator and rigid oscillator models in the limit of large
number of colors and small kaonic mass. Let us consider the decuplet of baryons (J = 3/2,
(p, q) = (3, (Nc − 3)/2)). Contributions to mass formula linear in the square of flavor symmetry
breaking mass mK are found to be

δMRR
∆ '

(

2

Nc
− 12

N2
c

)

m2
KΓ, δMRO

∆ =
2

Nc
m2

KΓ,

δMRR
Σ∗ '

(

3

Nc
− 23

N2
c

)

m2
KΓ, δMRO

Σ∗ =

(

3

Nc
− 5

N2
c

)

m2
KΓ,

δMRR
Ξ∗ '

(

4

Nc
− 34

N2
c

)

m2
KΓ, δMRO

Ξ∗ =

(

4

Nc
− 10

N2
c

)

m2
KΓ,

δMRR
Ω '

(

5

Nc
− 45

N2
c

)

m2
KΓ, δMRO

Ω =

(

5

Nc
− 15

N2
c

)

m2
KΓ.

(16)

As it is known, in the limit of large number of colors both rigid rotator and rigid oscillator
apporaches coincide [5]. But it can be seen that there is difference in the next to leading order
corrections in the 1/Nc expansion. Possible way to remove disagreement is the following. The
rigid oscillator calculation involves normal-ordering ambiguities, so if we assume that the normal
ordering corrections change the mass formula by an extra additive term of order O(1/N 2

c ),

∆M(norm.ord.) = −6 (2 + |S|)
N2

c

m2
KΓ, (17)

then the difference between two variants of the model will be removed.
In the same way we can consider, for example, different pentaquark states, with strangeness

+1 and isospin 0, 1 or 2:

δMRR
Θ0

'
(

3

Nc
− 27

N2
c

)

m2
KΓ, δMRO

Θ0
=

(

3

Nc
− 9

N2
c

)

m2
KΓ,

δMRR
Θ1

'
(

3

Nc
− 25

N2
c

)

m2
KΓ, δMRO

Θ1
=

(

3

Nc
− 7

N2
c

)

m2
KΓ,

δMRR
Θ2

'
(

3

Nc
− 23

N2
c

)

m2
KΓ, δMRO

Θ2
'

(

3

Nc
− 5

N2
c

)

m2
KΓ.

(18)

The difference between results of rigid rotator and rigid oscillator models in this case too is
described by expression (17).
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Figure 2: Schematic picture of the mass splittings within chiral soliton model. The upper
left figure corresponds to the nonexotic octet and decuplet, the upper right one — to exotic
antidecuplet, the lower — to 27-plet (J = 3/2) and to 35-plet (J = 5/2) of exotic baryons.
Experimental data are shown by direct crosses +, position of states obtained within CSA
with configuration mixing is marked by incline crosses ×, the circles show position of states
within simplistic quark model with difference between strange and nonstrange quark masses
∆ms ' 130MeV . Full circles show manifestly exotic states and empty circles — cryptoexotic
states. For antidecuplet the fit was made for the state with S = +1.

5 Comparison with simple quark model

One important property of strangeness contents of baryons given in tables 1, 2 is that they
satisfy (at arbitrary number of colors) Gell-Mann — Okubo relations:

CS(p, q, Y ′, I) = a(p, q)Y ′ + b(p, q)

[

Y ′2

4
− I(I + 1)

]

+ c(p, q), (19)

Y ′ = S + 1.

Here a, b and c are constant within any SU(3) multiplet. For octet

a({8}) = − Nc + 2

(Nc + 3)(Nc + 7)
, b({8}) = − 2

(Nc + 3)(Nc + 7)
, c({8}) =

3

(Nc + 7)
, (20)

for decuplet

a({10}) = − Nc + 2

(Nc + 1)(Nc + 9)
, b({10}) = − 2

(Nc + 1)(Nc + 9)
, c({10}) =

3

(Nc + 9)
, (21)
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and so on. From (19), in particular, follows linear behaviour of masses of any chain of states
with I = ±Y ′/2 + const. All states within definite multiplet, satisfying such relation, are
equidistant.

Baryon spectrum obtained within the chiral soliton approach (for details of CSA calculation
see [6, 1]) can be compared with quark model (fig. 2). For comparison the most simple variant
of the quark model was used, where strange quark and antiquark masses are equal, as well as
they are equal in different SU(3) multiplets. The result of chiral soliton model calculation is in
rough agreement with the mass splitting given by the quark model. It is important that better
agreement is achieved for manifestly exotic states, which have unique quark contents, while the
quark contents of cryptoexotic states qqq(α ss̄ + β uū + γ dd̄) are model-dependent.

6 Conclusions

Rigid rotator and rigid oscillator variants coincide in the limit of large Nc, however, already
subleading terms are different. The difference between results of this two models can be de-
scribed by expression of special form for normal-ordering correction. Explicit calculation of
strangeness contents at arbitrary number of colors shows that chiral soliton model mimics the
quark model due to Gell-Mann — Okubo relations. Numerically, results of quark model are
mainly reproduced in CSA, expessially for manifestly exotic states.
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