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Abstract

A possibility of semiphenomenological description of vacuum effects in QCD quantized on
the Light Front (LF) is discussed. A modification of the canonical LF Hamiltonian for QCD
is proposed, basing on the detailed study of the exact description of vacuum condensate in
QED(1+1) that uses correct form of LF Hamiltonian.

1 Introduction

First of all let us remind briefly basic advantages and main difficulties of the quantization on
the LF (by the ”LF” we mean the hyperplane x+ = 0 in Dirac [1] ”light cone” coordinates
x± = (x0 ± x1)/

√
2, with the x+ playing the role of time).

1. LF momentum operator P− = (P0 − P1)/
√

2 ≥ 0 is nonnegative for states with p0 ≥
0, p2 ≥ 0. Like usual space momentum it is kinematical (quadratic in fields) generator of
translations (in LF coordinate x−). The vacuum state can be identified with the eigenstate of
the P− with minimal eigenvalue p− = 0.

The field operator Φ(x) at x+ = 0 can be classified in p− via the following form of Fourier
decomposition (here the Φ(x) is taken to be a scalar field):

Φ(x) =

∞
∫

0

dp−√
2p−

(

a(p−, x
⊥)e−ip−x

−

+ h.c.
)

, (1)

where a(p−, x
⊥) and ia+(p−, x

⊥) at p− > 0 enter into scalar field action as canonically conju-
gated variables on the LF:

[a(p−, x
⊥), a(p′−, x

′⊥)] = 0, (2)

[a(p−, x
⊥), a+(p′−, x

′⊥)] = δ(p− − p′−)δ(x⊥ − x′
⊥
). (3)

The LF momentum operator is

P− =

∫

dx−
∫

d2x⊥(∂−Φ)2 =

∫

d2x⊥
∞
∫

0

dp−p−a
+(p−, x

⊥)a(p−, x
⊥) ≥ 0. (4)
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”Physical vacuum” |0〉 is defined like ”mathematical” one:

a(p−, x
⊥)|0〉 = 0, p− > 0. (5)

This simplicity of the description of the vacuum is main advantage of the quantization on the
LF.

2. The problem of searching the spectrum of bound states can be considered nonperturba-
tively in LF Fock space basis {a+....a+|0〉} by solving the following equations:

P+|Ψ〉 = p+|Ψ〉, P−|Ψ〉 = p−|Ψ〉, P⊥|Ψ〉 = 0. (6)

Then m2 = p2 = 2p+p−. This can be used in attempts to approach nonperturbatively to bound
state problem in Quantum Chromodynamics (QCD).

3. Main difficulties of LF quantization are related with singularities at p− → 0.
Possible regularizations are
(a) cutoff in p− (p− ≥ ε > 0), or
(b) the ”DLCQ” regularization (”DLCQ” means Discretized Line Cone Quantization), i.e.

the cutoff in x− (|x−| ≤ L plus periodic boundary conditions, and p− = πn
L , n = 0, 1, 2, . . . ).

The p− = 0 mode in the DLCQ is to be expressed canonically through other modes (for gauge
theory this was studied by Novozhilov, Franke, Prokhvatilov [2, 3]).

Both types of regularization can break Lorentz symmetry. This destroys usual perturbative
renormalization. The problem of restoring the symmetries, broken by the regularization on the
LF, and proving the equivalence of usual and LF quantizations is rather difficult. Nevertheless
it can be solved, at least perturbatively [4] (and to all orders in coupling constant [5]) via
comparison of two Feynman perturbation theories: one generated by usual and one by LF
quantizations. Such a comparison shows the necessity of adding to regularized canonical LF
Hamiltonian unusual ”counterterms” which restore the mentioned equivalence in perturbation
theory in the limit of removing the regularization.

The ”zero” modes (i.e. p− = 0 modes) and modes with p− in the vicinity of p− = 0 may be
important for the description of nonperturbative vacuum effects like condensates. These vacuum
effects can be introduced semiphenomenologically using as a guide solutions of simplified models.
As an example we will consider implications of QED(1+1) (massive Schwinger model) for such a
simplified description of vacuum effects in more complicated cases. Attempts to use this model
as a guide are common [6].

This model has gauge symmetry, nontrivial topological effects and confinement of fermions
like QCD. Furthermore, it has ”dual” description in terms of scalar boson field, and this descrip-
tion allows to see vacuum effects, nonperturbative from the point of view of usual QED(1+1)
coupling.

2 QED(1+1) on the Light Front

The Lagrangian density is

L = −1

4
FµνF

µν + ψ̄(iγµDµ −M)ψ, (7)

where µ, ν = 0, 1, Fµν = ∂µAν − ∂νAµ, Dµ = ∂µ − ieAµ,

γ0 =

(

0 −i
i 0

)

, γ1 =

(

0 i
i 0

)

. (8)

Canonical Hamiltonian on the LF in A− = 0 gauge is

P+ =

∫

dx−
(

e2

2

(

∂−1
− [ψ+

+ψ+]
)2 − iM2

2
ψ+

+∂−1
− ψ+

)

, (9)
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where the ψ =
(

ψ+

ψ−

)

and the F+− = −∂−A+ are already expressed owing to canonical con-

straints, as follows:

F+− = −
√

2 e ∂−1
−

(

ψ+
+ψ+

)

, ψ− =
M√

2
∂−1
− ψ+. (10)

Feynman perturbation theory in coupling constant e has strong infrared divergences. So we
began our study from boson form. The transition to this boson form can be performed in
different, but equivalent ways.

The result can be described by the Lagrangian density

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

MmeC

2π
: cos

(

θ +
√

4πφ
)

:, (11)

where m = e/
√
π, the boson field φ(x) can be related to fermion current, the θ is so called

”θ”-vacuum parameter, C is the Euler constant, and : : means normal ordering in interaction
picture. Fermion mass M (in fact, dimensionless parameter M/e) plays the role of coupling
constant.

We quantized this boson theory on the LF with the p− ≥ ε > 0 regularization and consid-
ered the difference between LF perturbation theory and corresponding covariant one (in Lorentz
coordinates) to all orders in the M [7]. The found difference can be generated by the ”coun-
terterms”, which must be added to canonical LF Hamiltonian. The LF Hamiltonian corrected
in this way has the form:

P+ =

∫

dx−
(

1

2
m2 : φ2 : −MmeC

2π
: cos

(

θ̂ +
√

4πφ
)

:

)

−

−
∫

dx−
∫

dy−
M2

2π |x− − y−|
(

: ei
√

4πφ(x−)e−i
√

4πφ(y−) : −1
)

. (12)

where the θ̂ is the parameter, replacing initial θ. It is related with fermion condensate and will
be specified below.

One can return again to fermion field variables on the LF, using DLCQ type of the regu-
larization with |x−| ≤ L and antiperiodic in x− boundary condition for fermion field. As in
[7] we identify fermion field ψ+(x) describing unconstrainted component ψ+(x) of fermion field

Ψ =
(

ψ+

ψ−

)

on the LF with following expression:

ψ+(x) =
1√
2L

e−iωe−i
π

L
x−(Q− 1

2
) : e−i

√
4πφ(x) : . (13)

Remark again that the ψ+(x) is chosen to be antiperiodic while φ(x) is taken periodic in x−

without zero mode.
The Q is the ”charge” operator on the LF:

Q =
√

2

L
∫

−L

dx− : ψ+
+(x)ψ+(x) : . (14)

The ω is the variable canonically conjugated to Q:

[ω,Q]x+=0 = i, eiωQe−iω = Q+ 1. (15)

We can define this operator more exactly. We introduce Fourier decomposition for the ψ+(x):

ψ+(x) =
1√
2L





∑

n≥1

bne
−i π

L
(n− 1

2
)x− +

∑

n≥0

d+
n e

i π

L
(n+ 1

2
)x−



, (16)

3



where at x+ = 0

{bn, b+n′} = {dn, d+
n′} = δnn′ , {bn, bn′} = {dn, dn′} = 0, (17)

because the expression (13) satisfies canonical anticommutation relations for fermion fields on
the LF.

We define the vacuum |0〉 as a state corresponding to the minimum of the P−:

P− =
∑

n≥1

b+n bn
π

L

(

n− 1

2

)

+
∑

n≥0

d+
n dn

π

L

(

n+
1

2

)

. (18)

Hence,

bn|0〉 = dn|0〉 = 0. (19)

For the charge Q we get

Q =
∑

n≥1

b+n bn −
∑

n≥0

d+
n dn. (20)

We can fix the operator eiω as follows:

eiωψ(x)e−iω = ei
π

L
x−ψ(x), ψn → ψn+1, (21)

eiω|0〉 = b+1 |0〉, e−iω|0〉 = d+
0 |0〉, (22)

that agrees with the definition of vacuum state |0〉 as filled Dirac sea:

|0〉 = d0d1 . . . |0D〉, Ψ(x)|0D〉 = 0. (23)

One can show [7] that the boson form of the corrected LF Hamiltonian P+ transforms to
following fermion form:

P+ =

L
∫

−L

dx−
(

e2

2

(

∂−1
− [ψ+

+ψ+]
)2 − iM2

2
ψ+

+∂−1
− ψ+−

−eMeC
√

2L

4π3/2

(

e−iθ̂(M/e, θ)−i π

2L
x− eiωψ+ + h.c.

)

)

=

=

L
∫

−L

dx−
(

e2

2

(

∂−1
− [ψ+

+ψ+]
)2 − iM2

2
ψ+

+∂−1
− ψ+−

−eMeC

4π3/2

(

e−iθ̂(M/e, θ) eiωd+
0 + h.c.

)

)

. (24)

The θ̂(M/e, θ) is related to fermion condensate parameters [7]:

sin θ̂ =
2π3/2

e eC
〈Ω| : ψ̄γ5ψ : |Ω〉 = 〈Ω| : sin(φ+ θ) : |Ω〉, (25)

where the |Ω〉, ψ and φ mean physical vacuum, fermion field and corresponding boson field in
the theory, quantized in Lorentz coordinates.

It is possible to show that

θ̂(M/e,−θ) = −θ̂(M/e, θ), θ̂(M/e, 0) = 0, θ̂(M/e, π) = π. (26)
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It is remarkable that the ”counterterm” (which restores the equivalence with formulation
in Lorentz coordinates in boson form of P+), being proportional to M 2, exactly coincides with
corresponding (proportional to M 2) canonical term of the P+ in the fermion form. The terms,

proportional to Me±iθ̂ are not present in canonical fermion form of LF Hamiltonian. They
depend on vacuum condensate parameter θ̂ through fermion ”zero” modes d0, d

+
0 which enter

the Hamiltonian linearly via ”neutral” combinations eiωd+
0 and d0e

−iω.
Any bound state with Q = 0 and fixed finite value of the p− = (πK)/L can be described

in terms of fermion Fock space (formed with b+d+ acting on the vacuum |0〉). Owing to the
positivity of the spectrum of the P− for these states (which are taken to be orthogonal to the
vacuum), the Hamiltonian P+ on this subspace can be represented by finite dimensional matrix.

One can calculate the spectrum of mass

m2 = 2p−p+ =
2πK

L
p+ (27)

numerically for different integer K. An extrapolation of results to K → ∞ gives ”true” values
of mass.

We have found good agreement [8] with lattice calculations in Lorentz coordinates for θ = 0
at any M/e, see fig. 1, and for θ = π at small M/e (for larger M/e we see the behaviour
of the spectrum, indicating possible phase transition, that is seen also in mentioned lattice
calculations), see fig. 2. On the fig. 1 we use normalized value

Mnorm
1 =

M1
√

m2 + (2M)2
, (28)

where M1 is the mass of lowest bound state.
Beside of that we have calculated the spectrum for any other values of the parameter θ̂ (or

for 0 < θ < π) that was not yet done with lattice in Lorentz coordinates. We have found for
all nonzero θ̂ some ”critical” region of M/e where the mass spectrum becomes unbounded from
the bottom. This indicates that the perturbation theory in M/e, that we used in our analysis,
fails at these ”critical” values of M/e.

It is very interesting problem to find a way to continue our LF Hamiltonian to ”nonpertur-
bative” in M/e region.

Let us consider only LF Hamiltonian obtained perturbatively to all orders in M/e. We can
formally find some Lagrangian, that generates this Hamiltonian via canonical formulation on
the LF. Assuming that this Lagrangian is the ordinary one plus some counterterms, it is easy
to find that these counterterms must be such that only the constraint, which connects ψ− and

ψ+ components of bispinor field ψ =
(

ψ+

ψ−

)

, should be modified. In naive canonical formulation

of QED(1+1 ) on the LF such constraint has the following form:

√
2 ∂−ψ− −Mψ+ = 0 (29)

being the one of components of Dirac equation. ”Zero” mode of the ψ− is unconstrainted by
this equation.

For our DLCQ formulation with antiperiodic in x− fields ψ we introduce the following
modification of this constraint :

√
2 ∂−ψ− −Mψ+ +

e eC

2π3/2
ei(ω−θ̂)+i

π

2L
x− = 0. (30)

Here the ψ− has no zero mode because of antiperiodic boundary conditions.
Now one can construct modified QED(1+1) Lagrangian, that generates this form of the

constraint. Having such a Lagrangian one can construct corresponding LF Hamiltonian and
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Figure 1: The results of the calculation of the mass M1 of lowest bound state at θ̂ = θ = 0;
∗ corresponds to results, obtained by the extrapolation to the domain K → ∞, 4 corresponds
to N = 30, � corresponds to known results of the calculation [9] on the lattice.
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Figure 2: The results of the calculation of the mass M1 of lowest bound state at θ̂ = θ = π;
∗ corresponds to results, obtained by the extrapolation to the domain K → ∞, � corresponds
to known results of the calculation [10] on the lattice.
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substitute the solution of the constraint w.r.t. the ψ− into this LF Hamiltonian. In this way
we come back to abovementioned form of corrected LF Hamiltonian.

The expression for the ψ−, respecting our modified constraint, includes the operator eiω.
Taking into account the properties of this operator, we can check that correct values of vacuum
condensate parameters, can be get on the LF using LF vacuum |0〉 for corresponding VEVs:

〈0|ψ−
+ψ+|0〉

∣

∣

M→0
= 〈0| 1√

2
∂−1
−

(

Mψ+
+ − e eC

2π3/2
e−i(ω−θ̂)−i

π

2L
x−

)

ψ+|0〉
∣

∣

∣

∣

M→0

=
eeCeiθ̂

2π3/2
. (31)

3 A description of vacuum condensate in QCD on the LF

The remark at the end of previous section implies a possible way of semiphenomenological
introduction of vacuum parameters in QCD(3+1) on the LF.

Namely, we can assume similar modification of the (3+1)-dimensional analog of the con-
straint equation, relating the ψ− and the ψ+ on the LF, using the same DLCQ formulation.
To make this correctly one has to introduce a lattice with respect to transverse coordinates.
Here we only describe the idea. We introduce (3+1)-dimensional analog of operators eiω and Q,
defining for each component of quark field ψj(x) some unitary operator Uj(x

⊥) and ”transverse
charges” Qj(x

⊥). We require

Uj(x
⊥)ψj(x)Uj

+(x⊥) = ei
π

L
x−ψj(x). (32)

Beside of that

[Uj(x
⊥), Qj′(x

′⊥)] = δjj′δx⊥x′⊥Uj(x
⊥),

Qj(x
⊥)|0〉 = 0,

Uj(x
⊥)|0〉 = d+

0j(x
⊥)|0〉,

U+
j (x⊥)|0〉 = b+1j(x

⊥)|0〉. (33)

Then we can write the component of Dirac equation that presents our LF constraint as
follows:

√
2 ∂−ψ−j(x

⊥) + (D̂⊥ −M)ψ+j + κUj(x
⊥)ei

π

2L
x− = 0, (34)

where

D̂⊥ =
∑

k=1,2

σkDk, (35)

and the κ is a parameter related with possible vacuum effects. Resolving this constraint w.r.t.
ψ−j we can obtain modified form of the QCD LF Hamiltonian, including vacuum parameter κ,
and consider bound state problem with this Hamiltonian.

First results on this way were discussed by S. Dalley and G. McCartor [11]. They showed
that new terms influence the qq̄ meson mass spectrum, correctly splitting masses of π and ρ
mesons.
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