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Abstract

We consider two main points in the color bosonization approach to the infrared QCD: (a)
the definition of the effective action and (b) decomposition of the QCD gauge field, which
includes quark chiral papameters.

1 Introduction

Due to the phenomenon of Chiral Anomaly [1], the total color space unifies gauge and chiral
(anomalous) sectors in the unique sector with topological properties, but with the same number
of field variables as in the gauge sector. To understand the infrared dynamics in the total color
space is essential for solution of the confinement problem and comparing different scenarios of
infrared behaviour, and , in particular, for verification of the monopole condensation scenario
[2]. In this talk we discuss two main points in the color bosonization approach to infrared QCD
[3]: definition of an effective action and decomposition of the QCD gauge field.

A search for new types of the gauge field decompositions or configurations with topological
properties, which could be essential for the infrared QCD, has now quite a long history (n-field
by Faddeev [4], the Cho decomposition [5], two Faddeev-Niemi decompositions into magnetic
and electric-like variables [6] and related research [7, 8, 9, 10, 11]. The philosophy of the color
bosonization approach differs from that of these studies only in relation to the color Chiral
Anomaly: the Anomaly is taken into account explicitly in color bosonization by considering
quark chiral parameters, while in other gauge field decompositions the Anomaly was present
implicitly via topological variables. The main problem of the color bosonization is how to merge
both types of variables (gauge field and Anomaly ones) into unique set. Definition of an effective
bosonization action depends on situation with Anomaly variables: if they are external to the
gauge field variables, the effective action requires a flavor-like definition, if they are separated
from quarks and dissolved in the gauge field variables, the action is given by direct integration
over quarks.

We develop the theory at example of the color SU(2) group. An extension to the color SU(3)
will use many points of the SU(2) case [12].

2 Bosonization in the flavor case

Let us review the bosonization approach to the effective chiral action in the case of chiral flavor
[13]. We consider massless fermions in external vector and axial vector fields Vµ, Aµ. The path
integral of fermions Zψ [V,A] is a functional of V,A:
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Zψ [V,A] =

∫

dµψ exp i

∫

dxψ 6 D (V,A)ψ (1)

where 6 D = iγµ (∂µ + Vµ + iγ5Aµ) is the Dirac operator. The chiral transformation of
fermions is given by

ψ′
L = ξLψL, ψ

′
R = ξRψR, ψ = ψL + ψR (2)

where ξL (x) and ξR (x) are local chiral phase factors of left and right quarks ψL and ψR,
represented by unitary matrices in defining representations of left SU (N)L and right SU (N)R
subgroups of the chiral group GLR = SU (N)L × SU (N)R. For ψL = 1

2
(1 + γ5)ψ,ψR =

1
2
(1 − γ5)ψ, generators tLa and tRa of left and right subgroups of GLR can be written as

tLa = 1
4

(1 + γ5) τa, tRa = 1
4

(1 − γ5) τa, [tLa,tRb] = 0, where τa, a = 1, 2, 3 are the Pauli matri-
ces. Then quark left and right chiral phase factors ξL, ξR arise from application of operators
ξ̂L = exp(−itLaωLa), ξ̂R = exp(−itRaωRa) to left and right quarks ψL and ψR. Vector gauge
transformations g (x) are associated with ta = tLa + tRa = τa/2 , i.e. g (x) has properties of
the product ξ̂L (x) ξ̂R (x) of identical left and right rotations, ωL = ωR = α. The generator of
purely chiral transformations g5 (x) is t5a = γ5τa/2 = tLa − tRa; thus, g5 (x) has properties of
ξ̂L (x) ξ̂+R (x) for ωL = ωR = Θ. Infinitesimally, the Dirac operator is transformed according to

δ 6 D = [i
1

2
αaτa, 6 D] + {i

1

2
γ5Θaτa, 6 D} (3)

Commutation relations for ta, t5a are given by

[ta, tb] = iεabctc, [ta, t5b] = iεabct5c, [t5a, t5b] = iεabctc (4)

Instead of phases ξL and ξR one can work with the chiral field U = ξ+
RξL, which describes

rotation of only left quark leaving right quark in peace ψL → ψ′
L = UψL,ψ → ψ′

R = ψR. The
same result can be obtained by the chiral transformation ψL → ξLψL, ψR → ξRψR, followed
by a vector gauge transformation with a gauge function ξ+

R . The usual chiral gauge choice is
ξR = ξ+L , then the chiral field is taken as squared left chiral phase: U = ξ2

L.
The chiral tranformation of fermions in the Dirac action is equivalent to the following change

of the Dirac operator

ψ̄′ 6 D (V,A)ψ′ = ψ̄D
(

V U , AU
)

ψ

V U =
1

2
[U+(∂ + V +A)U + (V −A)]

AU =
1

2
[U+(∂ + V +A)U − (V −A)] (5)

A transformed fermionic path integral Z ′
ψ because of ψ → ψ′ in the Dirac action is equal

to an original path integral as a functional of transformed fields Z ′
ψ [V,A] = Zψ [V ′, A′]. Zψ is

invariant under vector gauge transformations of fermions, but undergoes changes under chiral
tranformations, because of non-invariance of the fermionic measure dψ̄dψ [14]: chiral transfor-
mations are anomalous. The chiral anomaly A is defined by an infinitesimal change of lnZψ
due to an infinitesimal chiral transformation δg5 = iθaτa ≡ Θ.

We put g5(s) = exp γ5Θs and write the anomaly A (x,Θ) at a chiral angle Θ

A (x,Θ) =
1

i

δ lnZψ (expΘs)

δs s=1
(6)

The usual way [13] to calculate effective chiral action Weff is to find the anomaly and
integrate it over s up to g5 = exp γ5Θ.

2



Weff = −

∫

d4x

∫ 1

0

dsA (x; sΘ)Θ (x) =

∫

d4xLeff −WWZW (7)

where the Wess-Zumino-Witten term WWZW describes topological properties of g5 (and U
) and is represented by a five-dimensional integral with x5 = s. It is the analogue of Weff for
color that we are interested in.

3 Color bosonization

The basic color fields are the Yang-Mills field Vµ (x) and the quark field ψ̄ (x) , ψ (x) with the
Lagrangian

Lψ = ψ̄ 6 D (V )ψ, (8)

where 6 D (V ) is the Dirac operator for massless quarks with the Yang-Mills field Vµ. There
are no dynamical axial vector field: Aµ = 0.

We consider the vacuum functional Z for the system quarks + gluons as being always in
the presence of the color chiral field U (x) describing local chiral degrees of freedom of quarks
ψ̄, ψ and resulting in replacement of Zψ [V ] by Zψ

[

V U , AU
]

, where V U and AU are vector and
axial vector fields arising in the Dirac operator 6 D (V ) →6 D

(

V U , AU
)

from the gluonic field Vµ
due to chiral rotation

Z =

∫

dµV {exp i

∫

dxLYM (V )}Zψ
[

V U , AU
]

(9)

The vacuum functional Z depends on color degrees of freedom of quarks and gluons. The
gluon measure dµV includes only vector color degrees, while the quark functional Zψ contains
both vector and chiral color degrees in the quark measure dψ̄dψ. Explicitly Zψ[V ] depends only
on gluonic field Vλ. Under transformations of the color gauge group SU (2)c = SU (2)L+R the
vacuum functional is invariant,δZ=0. The existence of chiral anomaly means that δZ 6= 0 under
chiral transformations belonging to the coset GLR/SU (2)L+R.

While in the flavor case Vµ and U are always independent variables, in the color case two
types of questions are possible:

(a) what is an action for the chiral field in a given gluon field. For example, what is an
action for chiral soliton in color vacuum field [15]. Total number of variables should not exceed
that of dynamical gluon field. This question is of the same type as in the flavor case, and an
action is given by an expression (7) for flavor one.

(b) What is an anomalous action for color variables taking into account that a pair
(

V U , AU
)

should contain the same number of variables as V . Then an initial path integral is ZU in (9)
with all color variables

(

V U , AU
)

of left-right group shown explicitly. In this case, an anomalous
action is defined by the expression, which formally is of opposite sign compared with the flavor
case (7). The ”bosonized”, or anomalous action is defined by the expression

Wbose

[

V U , AU
]

= −i(lnZψ
[

V U , AU
]

− lnZψ [V, 0]), (10)

which includes in general two different actions: a topological WWZW and a non-topological
Wan ones. For SU(2) WWZW = 0. For SU(3) it is the most interesting part.

We consider one loop approximation for gluons in the background gauge in absence of
external vector fields. Then Vµ will be a classical (background) field for gluons. There is no
background axial vector field Aµ. After quark color chiral transformation with the chiral field
U , we get from Vµ a vector matrix WU

µ containing both V U
µ and AUµ

WU
µ = V U

µata +AUµat5aV
U
µ =

1

2

(

U+VµU + Vµ + U+∂µU
)

,
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AUµ =
1

2
U+DµU, (11)

where Dµ is defined with the background field Vµ. When U = 1 we return to the case, when
AU = 0 and WU

µ = Vµ. Note that a chirally rotated gauge field is just an extension of an initial

gauge field by an induced axial vector field: V U
µ = Vµ +AUµ .

Thus, in the color bosonization approach, there are three vectors Vµ, V
U
ν , A

U
λ living in the

common color space of gluons and chiral color of quarks. They include two gauge fields Vµ
and V U

µ , belonging to different vector-type subgroups of left-right chiral group. Vµ transforms

with La + Ra color generators, while V U
µ transforms with generators LUa + Ra, where the left

generator is additionally rotated. We remind that the chiral field U belongs to the anomalous
channel Θ.

Because of chiral transformations, asymptopic constraints imposed on gluonic field Vµ lead
to constraints for V U

µ , A
U
µ . It is usually required for the dynamical Vµ that

∫

d3xtrVµVµ ≺ ∞ (12)

We assume that this property is preserved by chiral transformations. In view of orthogonality
of t5a and tb, we have

∫

d3x{trAUµA
U
µ } ≺ ∞ (13)

It means that asymptotically

U+DµU → 0, r → ∞

Consider the chiral field U = ξ2
L, where ξL is an SU (2)L rotation in the fundamental

representation with generators τa/2

ξL (x) = exp (in̂F/2) , 0 ≤ F ≤ 2π

U = exp 2(in̂F/2), n̂ = naτa, nana = 1 (14)

U+DµU = in̂∂µF + i
1

2
Dµn̂ sin 2F + [n̂,Dµn̂]

1

2
sin2 F

Then asymptotically at r → ∞

∂µF → 0, Dµn̂→ 0

Within the chiral left-right group gauge fields Vµ and V U
µ are associated with different SU(2)-

subgroups. One may conjecture that there is a finite region in the total color space, where both
fields are equivalent. Such a region should correspond to restricted number of color degrees of
freedom. A boundary of this region, where number of variables is changed, will be reflected in
behaviour of the determinant det [1 +R (U)].

Consider a change of fields Aµ (x) → A′
µ (x) = 1

2
(U+ (x)Aµ (x)U (x) +Aµ (x)), or

A′
µa =

1

2
(δab +Rab (U))Aµb, Rab (U) =

1

2
tr

(

λaU
+λbU

)

(15)

where Rab (U) is the transformation U in adjoint representation. We get 3×3 matrix R (U) =
R

(

ξ2L
)

by replacing SU (2) generators τa/2 with SO(3) hermitian generators Oa

R (U) = exp iOana2F = 1 + iN̂ sin 2F + N̂2(cos 2F − 1) (16)

The 3×3 matrix N̂ = Oana has a property N̂3 = N̂ , so that eigenvalues of N̂ are equal
to +1,-1,0. It follows that det 1

2
(1 +R (U)) = 1

2
(1 + cos 2F ). Thus, we have singularities
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at points xs, where F (xs) = π/2 , Us ≡ U (xs) = in̂ (xs) and R (Us) = 1 − 2{N̂ (xs)}
2. At

singularity two eigenvalues of the matrix R (U) coincide. In the chiral color space, these singular
points xs constitute a spherical surface of radius F (xs) in the anomalous channel (i.e. which is
gauge equivalent to a region of γ5θ -parameter of the left-right group), where a general gluonic
field Vµ cannot be expressed in terms of chirally dependent field V U

µ . The transformation

Vµ [x] → 1
2
[1 +R (U)]Vµ (x) may be induced by a global chiral rotation, ∂µU = 0; thus, already

a global chiral rotation leads to a singular determinant.
Explicitly, using an expression V U

µ = Vµ +AUµ we get in terms of color vectors ~n, ~Vµ

~V U
µ = ~Vµ cos 2F −

1

2

[

~Vµ, ~n
]

sin 2F − ~n(~Vµ, ~n) sin2 F+

i~n∂µF −
1

2
∂µ~n sin 2F − [~n, ∂µ~n] sin2 F (17)

so that at F = π/2 the field V U
µ looses structures represented by ∂µ~n and

[

~Vµ, ~n
]

:

V U
µ =

1

2

(

n̂∂µn̂+ n̂V̂µn̂+ Vµ

)

, F =
π

2
(18)

while the matrix ∆ = 1
2
(1 +R (U)) reduces to ∆0 = 1 − N̂2 with matrix elements ∆0

ab =

nanb, and determinant det∆0 = 0. The matrix 1−N 2 is a projector on eigenvalue N̂ ′ = 0. Thus,
at F = π/2, only fields with N ′ = 0 are essential for construction of singular free connections in
color space including chiral degrees of freedom introduced by U . In fact, this conclusion follows
directly from properties of ∆

(∆)ab nb = na, (∆
−1)abnb = (1 − iN̂ tanF )abnb = na (19)

It reflects (by construction of the chiral field U = exp in̂F ) the fact that U commutes locally
with a function of n̂.

Let us demonstrate, that it is possible to find such a gluon field Vµ and such a chiral field U ,
that we have an invariance relation Vµ = V U

µ . We represent Vµ in the form Vµ = Cµn̂+ 1
2
U∂µU

+,

where Cµ is an abelian gauge field and check the relation V U
µ = 1

2
(UVµU

+ + Vµ + U∂µU
+) =

Vµ. It can be satisfied if U = in̂ or F = π/2. We denote this special field on the sphere Ω (π/2)
by V Ω

µ

V Ω
µ = Cµn̂+

1

2
n̂∂µn̂,

AΩ
µ =

1

2

(

UV Ω
µ U

+ − Vµ + U∂µU
+
)

= 0 (20)

The chiral field U and the gauge field Vµ contain now the same unit color vector n̂. Second
term in V Ω

µ satisfies separately the equivalence relation V U
µ = Vµ . The field V Ω

µ is a basic

field in the color bosonization approach, because then an axial vector AU
µ (Ω) = 0; both the

Yang-Mills action IYM
(

V Ω
)

and the quark integral Zψ
[

V U , AU
]

, which is in Ω just Zψ
[

V Ω, 0
]

,
depend on the same V Ω only. There is no color chiral anomaly -neither a topological one (for
SU(3)), nor of a non-topological type. The field V Ω

µ can be obtained by chiral transformation

from the simplest vector field, namely, from an abelian field V 0
µ = Cµn̂. Also, V Ω

µ is invariant
under the gauge transformation with the chiral field U = in̂ and under chiral transformation

V Ω
µ = (V 0

µ )U =
1

2
(n̂V 0

µ n̂+ V 0
µ + n̂∂n̂), V Ω

µ = n̂V Ω
µ n̂+ n̂∂µn̂

The corresponding Yang-Mills field strength V Ω
µν is

V Ω
µν = Cµν n̂+

1

4
[∂µn̂, ∂ν n̂] (21)
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The field V Ω
µ depends on four degrees of freedom, instead of required 6 degrees in the case

of SU(2). The field V Ω
µ was introduced as a starting point of n−model [4]and ”Restricted gauge

theory” [5].
Fixing det∆ = 1 corresponds to excluding the Cartan mode exp iτ3F from the chiral field

U = exp in̂F . In terms of SU (2)L× SU (2)R generators τa/2, γ5τb/2 , it means that we rotate
n̂ to τ3 and then fix γ5τ3− parameter F .

4 QCD-SU(2)c at low energies: gauge field and the effective
gluonic action

The field V Ω
µ is a common part of initial gauge field Vµ and chirally rotated version V U

µ . In left-

right group without dynamical Aµ these gauge fields are interrelated by Vµ = V Ω
µ −AUµ . Chiral

rotation of quarks in̂ transforms Zψ[V Ω − AU , 0] into Zµ[V
Ω, AU ], acting as a shift operator.

AUµ should anticommute with n̂. Denoting AUµ = −Xµ we come to the decomposition for the
QCD gauge field

Vµ = V Ω
µ +Xµ (22)

This decomposition for the QCD gauge field was discussed by Cho [5] in different approach.
For color bosonization approach anticommutativity relation {n̂,Xµ} = 0 is essential. Due

to this property of Xµ, a chirally rotated gauge field Vµ
U = (V Ω

µ +Xµ)
U = V Ω

µ is independent

of Xµ, while the axial field AUµ picks up the value AUµ = −Xµ. Thus, this expression for
a gauge field Vµ is, at the same time, a decomposition of a gauge field into chirally rotated
vector part V U

µ = V Ω
µ and chirally rotated axial vector part AUµ = −Xµ. In this form, it is

explicitly seen that the gluon sector and the quark sector are built on the same color variables,
and theYang-Mills action IYM (V ) and bosonization part Zψ

[

V Ω,−X
]

contain the same set
of background fields (V Ω

µ , Xµ). In the SU(2) case, an axial field AUµ = −Xµ leads to a non-
topological chiral anomaly of the quark integral Zψ. In the case SU(3) the chiral anomaly will
include also a topological term. Thus, in this decomposition of Vµ, the field Xµ is responsible
for the chiral anomaly, and consequently, for a bosonization action. Such an action together
with the Yang-Mills action and kinetic term will determine low energy color dynamics.

The color bosonization action Wan can be written in analogy with the flavor case [13].
In our notations, the non-topological part of Wan corresponds to the following Lagrangian
Lan = L+

(

V Ω
µ ,−Xµ

)

− L+

(

V Ω
µ +Xµ, 0

)

in the Minkowski space

Lan =
Λ2

4π2
trX2

µ −
1

12π2
tr{

1

4

(

V Ω
µν

)2
+XµV

Ω
µνXν−

1

2

[

DΩ
µ , Xµ

]2
−

1

4
[Xµ, Xν ]

2 +
(

X2
µ

)2
} +

1

48π2
tr

(

V Ω +X
)2

µν
(23)

where DΩ contains the field V Ω
µ , while

V Ω
µν = Cµν n̂+

1

4
[∂µn̂, ∂ν n̂]

is the field strength of V Ω
µ .

The Yang-Mills Lagrangian for Vµ = V Ω
µ +Xµ is given by

LYM = LΩ
YM +

1

2g2
tr{

(

DΩ
µXν −DΩ

ν Xµ

)2
+ [Xµ, Xν ]

2 + 2V Ω
µν [Xµ, Xν ]} (24)

The effective SU(2) gluonic Lagrangian in variables (V Ω
µ , Xν) is
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L = Lan + LYM = LΩ
YM +

Λ2

4π2
tr(∂µn̂)2+

T + P + (
1

24π2
+

1

g2
)tr{V Ω

µν [Xµ, Xν ]} (25)

where T is the kinetic term for Xµ and (−P ) is the potential

T = (
1

48π2
+

1

2g2
)tr{

(

DΩ
µXν −DΩ

ν Xµ

)2
} +

1

24π2
tr

[

DΩ
µ , Xµ

]2
(26)

P =
Λ2

4π2
trX2

µ −
1

12π2
tr(X2

µ)
2 + (

1

24π2
+

1

2g2
)tr [Xµ, Xν ]

2 (27)

We do not calculate the kinetic term tr(∂µn̂)2, because it comes from next approximation
[3]. It follows that trX2

µ can form a gauge invariant condensate
(

trX2
µ

)

0
= −g2σ/2 as a

minimum of −P , and a mass appears. Denote a hermitian vacuum field by φaµ, so that

σ = (φaµφ
a
µ) and Xµ = (φaµ +Y a

µ )τa/2i. Then σ = −9Λ2/(7g2 + 48π2) and m2
Y = −1

3
σb3 , where

b3 = (g2 + 12π2)/24π2g2. The condensate σ is negative, and the vacuum field φaµ is space-like.
The last term in T should be analysed together with the gauge condition for Vµ. In the flavor

case, the term (−P ) without tr{(X2
µ)

2 corresponds to the Skyrme Lagrangian. The lagrangian
for the n-field [4] is contained in the first two terms of L.

The Lagrangian of [5] is LYM (V Ω +X). New terms are contained in Lan; they are partly
built on structures already existing in LYM , but with different coefficients. Note, that an
expression tr

[

DΩ
µ , Xµ

]2
in color Lan looks as a standard gauge condition term, while in the

flavor case [DµAµ]
2 leads to ghosts. Last term in T and first two terms in P are quite new;

they are specific for bosonization. To get more insight into meaning of Lan we need to assume
a definite representation for Xµ. Investigation of the effective Lagrangian is the next step of
bosonization approach.

5 Discussion

We have studied the case of SU(2) color dynamics in the complete color space including the color
Chiral Anomaly, when not only color degrees of freedom of gluons, but also color chiral degrees
of freedom of quarks are taken into account. Usually it is admitted, that total number of gluonic
color degrees is the same as the number of gluonic plus quark chiral degrees, so that finally the
role of chiral degrees is to introduce topological structures, but not additional degrees. From
this viewpoint, there are different ways to investigate dynamics in the complete color space
according to different ways to incorporate topological properties in gluonic variables. Use of
chiral anomaly is one of such ways.The central role of the chiral anomaly in mass generation
was recently emphasized [16].

In order to develop color dynamics in presence of the color chiral field U of the Anomaly,
one should know, how it is related to gluonic field Vµ. We have shown, how to express chirally
rotated fields V U

µ and AUµ in terms of the decomposition components of gluonic field Vµ, and,

consequently, how to write down the Anomaly as a function of induced axial vector field AU
µ .

Also, we have shown that, the definition of bosonization action should be changed compared
with the flavor Anomaly case, because the chiral field does not introduce new variables.

It was shown that in the SU(2) color case, generation of mass of axial vector field AU
µ and

formation of bilinear condensate
〈

AUAU
〉

is due to potential term in bosonization action. A
necessity to have a bilinear condensate in the infrared QCD was find in [17]. To get a gauge
invariant bilinear condensate of the gauge field requires a special treatment [18]. In the color
bosonization approach the bilinear condensate is composed of axial vector components and is
gauge invariant by construction.
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