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Abstract

We compute the functional determinant for the fluctuations around the most general
self-dual configuration with unit topological charge for 4D SU(2) Yang-Mills with one com-
pactified direction. This configuration is called “instanton with non-trivial holonomy” or
“KvBLL caloron” [1, 2]. It is generalization of the usual instantons for the case of non-zero
temperature. We extend earlier results of [3] onto arbitrary values of paramiters.

1 Introduction

Since pioneered work of Callan, Dashen and Gross [4], where it was proposed to approximate
the QCD path-integral by a superposition of a dilute set of instantons, there was significant
success done by many authors which lead to the instanton liquid model [5, 6, 7]. This model
has many lattice and phenomenological confirmations. An instanton-like lumpy structure has
been observed in lattice studies using techniques like cooling [8, 9, 10, 11, 12, 13]. It explains
successfully the chiral symmetry breaking [14], describes hadronic correlators and details of
hadronic structure [15, 16, 17] and solves the U(1)A problem [18].

However, the standard instanton liquid model could not describe confinement [19]. In [3]
it was shown analytically that consideration of the more general solutions with non-trivial
holonomy (KvBLL calorons) [1, 20, 2] leads to the existence of two phases with phase transition
temperature Tc ' 1.1Λ. In [21] diluted non-interacting gaze of the KvBLL calorons was studied
in details. This approach is also motivated by lattice observations [22, 23, 24, 25, 26, 27, 28,
29, 30].

The KvBLL caloron [1, 2] is a generalization of the BPST instantons [31] and Harrington-
Shepard Instantone with trivial-holonomy [32]. It is a self-dual gauge field configuration period-
ical in one Euclidean time direction with period 1/T , where T - temperature. It is characterize
by an additional gauge invariant - holonomy or eigenvalues of the Wilson line that goes along
the time direction. Recently the higher charge calorons were obtained [33]. The fascinating
feature of the KvBLL caloron is that it consists of two BPS dyons for SU(2) gauge group (see
fig.1).

In general, to take into account the effect of quantum fluctuations around a classical solution
one expands the Euclidean action as follows [34]

Zcl = e−Scl

∫

d(collective coordinates) · Jacobian · Det′
−1/2

(Wµν) · Det(−D2
µ), (1)
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Figure 1: The action density of the KvBLL caloron as function of z, x at fixed t = y = 0. At
large separations r12 the caloron is a superposition of two BPS dyon solutions (left, r12 = 1.5/T ).
At small separations they merge (right, r12 = 0.6/T ).

which is the single-pseudoparticle contribution to the partition function. Here Dµ is a covari-
ant derivative in adjoint representation, Det′(Wµν) denotes the non-zero mode determinant of
the quadratic form of the Euclidean action, parametrized by the collective coordinates of the
classical solution. For self-dual field one can show [35] that Det′(Wµν) = Det4(−D2

µ). Thus
the determinant Det(−D2

µ) determines the weight of the quasi-particle or the probability with
which it occurs in the partition function of the theory. The quantum determinant for the case
of zero temperature was computed by ’t Hooft [18] in 70’s and it still plays an important role
for phenomenological and theoretical studies of strong interaction physics. The finite temper-
ature generalization was made by Gross, Pisarski and Yaffe [36]. They found the weight of
the instanton with trivial holonomy i.e. with unit value of the Wilson loop going along peri-
odic euclidean time direction. More recently exact analytical expressions were computed for
the determinants in the fundamental and adjoint representations of the SU(2) gauge group
and arbitrary holonomy in [3, 37]. Unfortunately, these expressions are extremely cumbersome
and occupy significant part of a hard disk space. Nevertheless, in [37] the results of numerical
evaluation were presented.

In this article we argue the existence of a simple relation between determinants in adjoint
and fundamental representations. Concretely, if the determinant in fundamental representation
is written in the form [37] (we take T = 1 and restore exact T dependence in the last section
only)

log Det(−∇2)
∣

∣

T=1
= log Det(−∇2)

∣

∣

T=0
+ A(v, r12) (2)

+ V

[

P

(

2π − v

2

)

− π2

12

]

+
πr12

2
P ′′

(

2π − v

2

)

,

where P (v) = v2(2π−v)2

12π2 - a perturbative potential, v - a quantity connected with holonomy
(when v = 0 and v = 2π the holonomy is trivial, see [3, 37] for notations), and r12 is a distance
between constituent dyons or r12 = πρ2T , where ρ is an instanton size. The determinant in
adjoint representation is simply

log Det(−D2)
∣

∣

T=1
= log Det(−D2)

∣

∣

T=0
+ 16A(v, r12) + log

(

1 +
r12vv

2π

)

(3)

+ V P (v) + 2πr12P
′′(v)

(we denote v = 2π − v). This connections is in spirit of the one found by Gross, Pisarski and
Yaffe. This relation provides an independent check of the results of [3]. In particular the large
r12 asymptotic, found there, can be easily rederived on the base of this relation. All analytical
and numerical results of [37] extend automatically on the isospin-1 case. The function A(v, r12)
is know with a good accuracy from [37].
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The way we argue the relation (4) is the following: using an exact expressions for the
determinants [3, 37] we calculate analytically expansion in powers of 1/r12 (see Appendix A),
and check the relation up to the 1/r10

12 . Then we check the relation numerically for a several
values of r12 and v with a precision 10−5. This calculation involves 3-fold integration of an
expression of several Mb size and by itself is rather nontrivial and is possible due to the numerical
and analytical power of Mathematica.

In section II we review old results related to KvBLL caloron important for the derivation.
In section III we derive the result basing on the 1/r12 expansion and in section IV we calculate
the quantum weight of the KvBLL caloron and make more accurate the estimation for the
temperature of the phase transition made in [3].

2 Old results

Before proceeding to argue the relation (4) between determinants in different representations
let us first remind results concerning determinants in the background of KvBLL caloron.

2.1 Zero temperature

When the size of the KvBLL caloron ρ or distance between constituent BPS dyons r12 = πρ2T
is small compare to 1/T the caloron reduces to the usual BPST instanton. For the BPST
instanton the ’t Hooft [18] results for isospin-1/2 and isospin-1 determinants are

log Det(−∇2)
∣

∣

T=0
=

1

6
log µρ + α(1/2) , α(1/2) =

γE

6
− 17

72
+

log π

6
− ζ ′(2)

π2
(4)

log Det(−D2)
∣

∣

T=0
=

2

3
log µρ + α(1), α(1) =

2γE

3
− 16

9
+

log 2

3
+

2 log(2π)

3
− 4ζ ′(2)

π2
,(5)

where µ is a Pauli-Villars regulator.

2.2 Nonzero temperature, trivial holonomy

The determinant in the case of the trivial holonomy was calculated by Gross, Pisarski and
Yaffe [36]. Then the holonomy becomes trivial the caloron becomes spherical symmetric.
Consequently, the resulting expressions are much more simpler. Nevertheless it have not been
shown analytically that the isospin-1 and isospin- 1

2 are related even for this more simple case.
For the isospin- 1

2 the result reads

log det(−∇2)
∣

∣

T=1
= log det(−∇2)

∣

∣

T=0
+ A(r12) −

πr12

6
(6)

where r12 = πρ2 can be interpreted as a distance between dyons when the holonomy become
nontrivial (we take T = 1). As it was verified numerically the isospin-1 determinant can be
written in the form

log det(−D2) = log det(−D2)
∣

∣

T=0
+ 16A(r12) +

4πr12

3
, (7)

where A(r12) has the following asymptotics

A(r12) = −πr12

36
+ O

(

r
3/2
12

)

=
1

18
− γE

6
− π2

216
− log(r12/π)

12
+ O

(

1

r12

)

(8)

3



2.3 Non-trivial holonomy, isospin-1/2

The task of calculating the determinant in the background of the caloron with nontrivial holon-
omy is more complicated because the field configuration has not spherical symmetry and has
additional parameter v, that is connected with the value of the holonomy (when v = 0, 2π the
holonomy becomes trivial). In [37] an expression for the isospin-1/2 was found for all distances
r12 and holonomies 0 ≤ v ≤ 2π

log Det(−∇2) = log Det(−∇2)
∣

∣

T=0
+ A(v, r12) +

[

P

(

v

2

)

− π2

12

]

V + P ′′

(

v

2

)

πr12

2
(9)

where function A(v, r12) is fitted by (26) and has the following large r12 asymptotic (in Appendix
A we give more terms in eq.(27))

A(v, r12) =
log(2π)

6
− v log v

12π
− v log v

12π
+

1

18
− γ

6
− π2

216
− log(r12/π)

12
(10)

− 1

12r12π

(

log(vvr2
12/π

2) − 23π2

72
+ 2γ +

37

6

)

+ O
(

1

r2
12

)

and for small r12 it is

A(v, r12) =
(3vv − 2π2)r12

72π
+ O

(

r
3/2
12

)

(11)

Note that (9) is a generalization of (6), that satisfies all asymptotics. Thus, eq.(9) generalizes
eq.(4) to arbitrary values of holonomy.

2.4 Non-trivial holonomy, isospin-1

Isospin-1 or Ghost determinant plays an important role since it determines the statistical weight
of the configuration. In [3] the large r12 purely analytic expression for asymptotic was found

log Det(−D2) = V P (v) +
2

3
log µ +

3π − 4v

3π
log v +

3π − 4v

3π
log v +

5

3
log(2π) + 2πP ′′(v) r12(12)

+
1

r12

[

1

v
+

1

v
+

23π

54
− 8γE

3π
− 74

9π
− 4

3π
log

(

vv̄ r2
12

π2

)]

+ c1 + O
(

1

r2
12

)

where

c1 = log 2 +
5

3
log π − 8

9
− 2 γE − 2π2

27
− 4 ζ ′(2)

π2
. (13)

The most nontrivial is a constant c1. It can be easily rederived independently, using result for
isospin-1/2 (10) and (4).

3 Derivation of the relation

In this section we derive the relation (4) from the comparison of the large r12 asymptotics. As
we shell show this relation is right at least up to the 10th order in 1/r12. The method of the
calculation is taken from [3].

The derivative of the determinant with respect to a parameter is

∂ log det(−D2)

∂r12
≡ −

∫

Tr (∂r12
AµJµ) (14)

Where Jµ is a vacuum current related to Green function of the covariant Laplas operator in the
background of the KvBLL caloron. One of the results of [3] and [37] is an expression for the
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Figure 2: Three regions of integration for well separated dyons.

vacuum current Jµ that is a rational function of r, s, R = erv, S = esv, E0 = e2iπx0 and v,
where r, s are distances from the BPS dyons (see. fig.2), 1/v and 1/v are their core sizes.

The main point in the expansion is to divide space into tree domains: two balls of radius R,
such that 1/v, 1/v � R � r12, surrounding the centers of the constituent BPS dyons, and all
the rest space. Then we expand expression in the core regions in powers of 1/r12 near each core
and integrate it over core domain. The expression outside cores has an exponential precision
and the only source of the 1/r12 terms here is the nontrivial domain of integration.

The vacuum current of the isospin-1 can be naturally divided into tree pieces Jµ = J r
µ +J s

µ +

Jm
µ (see [3] for notations). Let us denote by ∂ log detr,s,mcore

∂r12
the contributions to the ∂ log det(−D2)

∂r12

that comes from J r,s,m
µ i.e.

∂ log detr,s,mcore

∂r12
≡ −

∫

core
Tr

(

∂vAµJ r,s,m
µ

)

(15)

where integration is over two ball of the radius R. The total ∂ log det(−D2)
∂r12

is a sum of these
three contributions and a contribution that comes from the integration over the rest space
∂ log det(−D2)far

∂r12
. In Appendix A the expansion of these contributions in powers of 1/r12 is given.

One can easily see that in all order the following equalities hold

∂ log Detscores
∂r12

= 4
∂A

∂r12
−

2 log r12

R

3r2
12π

+
1

3r12
+

π

8r2
12

− 23

18r2
12π

+ (Rn terms) (16)

∂ log Detr+m
cores

∂r12
= 12

∂A

∂r12
−

2 log r12

R

r2
12π

+
1

r12
+

3π

8r2
12

+
5

6r2
12π

− 2π

r12(r12vv + 2π)
+ (Rn terms) (17)

here we do not write Rn terms as they all get cancel with the similar terms in the contribution
of the far from dyons region.

∂ log Detr+m+s
far

∂r12
=

8 log r12

R

3r2
12π

+
8 − 9π2

18πr2
12

+ 2πP ′′(v) + (Rn terms) (18)

adding up contributions from ’far’ and ’core’ regions we have

∂ log Det(−D2)

∂r12
= ∂r12

(

16A +
1

3
log r12 + log (2π + r12vv) + 2πP ′′(v)

)

(19)

integrating it to the small values of r12, where KvBLL caloron reduces to the ordinary BPST
instanton and the determinant is known, we can write

log Det(−D2) = log Det(−D2)
∣

∣

T=0
+16A(v, r12)+log

(

1 +
r12vv

2π

)

+2πP ′′(v)r12+V P (v) (20)
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Figure 3: Free energy of the caloron gas in units of T 3V at T = 1.5Λ (dotted), T = 1.325Λ
(solid) and T = 1.25Λ (dashed) as function of the asymptotic value of A4 in units of T .

We claim that this answer is exact. It gives right large r12 asymptotic (13) and consistent with
trivial holonomy results (6), (7). Moreover, we tested it numerically for a several values of r12

and v with a precision of order 10−5. We consider this as a serious prove of the relation (20).

4 Quantum weight

In this section we renew the main result of [3] quantum weight of the KvBLL caloron. The
concept of the quantum weight is discussed in details, for example, in [3]. For a self-dual
configuration it reads

Z =

∫ p
∏

i=1

dξie
−Scl

(

µ

g
√

2π

)p

J Det−1(−D2) (21)

where ξi are coordinates on the moduli space of the configuration, g is a gauge coupling, and J
is a measure on the moduli space. It can be expressed it terms of metric on the moduli space

J =
√

det gij (22)

in [1, 3] it was found that

J = 8(2π)8ρ3
(

1 +
r12

2π
vv

)

(23)

the total number of zero modes is 8. The associated collective coordinates are zµ - position of
KvBLL caloron center, one gauge orientation and two angles, that determine the orientation
is space, combined into O and instanton size ρ. One can parameterize the module space by
two 3D coordinates of dyons and two color orientations of the dyons. It turns our that the
determinant does not depend on the color orientations.

∫ 8
∏

i=1

dξi J =

∫

d4z d4O dρ ρ3
(

1 +
r12

2π
vv

)

16 (2π)10 =

∫

d3z1 d3z2

(

1 +
r12

2π
vv

) 1

r12
16 (2π)7

(24)
combining this with (21) and (4) we come to

ZKvBLL =

∫

d3z1 d3z2 T 6 CA

(

8π2

g2

)4(
ΛeγE

4πT

)
22
3

(

1

Tr12

)
4
3

× exp
[

−V P (v) − 16A(v, r12) − 2π r12 P ′′(v)
]

,

CA = 28π2 exp

(

16

9
− 8γE +

4ζ ′(2)

π2
+

2

3
log 2

)

(25)
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Surprisingly, the moduli space measure exactly cancels with the third term in expression (20)
for Det(−D2).

A(r12, v) was fitted in [37] by

A(v, r12) ' − 1

12
log

(

1 +
πr12T

3

)

− r12α

216π(1 + r12T )
+

0.00302 r12(α + 9vv/T )

2.0488 + r2
12T

2
(26)

where α = 18v log v
T + 18v log v

T − 216.611T . This expression has a maximum absolute error
5 × 10−3.

4.1 Estimation of the Tc

Here we make slightly more accurate the crude estimation of the free energy of ensemble of
KvBLL calorons without taking into account an interaction made in [3]. We do not repeat the
details here and just give the result.

To obtain a phase transition one has to consider a gas of the calorons. The density of the
calorons increases when the temperature becomes smaller. At some critical temperature Tc the
density becomes sufficient to override the perturbativ potential P (v) and nontrivial values of
holonomy becomes preferable (see fig.3). Our new estimation for Tc is 1.3Λ which is only 20%
bigger then in [3].
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A Series expansion with respect to 1/r12

In this appendix we give results of the expansion in powers of 1/r12. This expressions are used to obtain eq.(16)
and eq.(17).

∂A(v, r12)

∂r12

= −
1

24r12

+

»

25

144π
+

γE

12π
−

23π

1728
+

log(vr12/π)

12π

–

1

r2
12

+
1

12πr3
12v

−
1

24πr4
12v

2
(27)

+

»

1

36π
−

π3

2160

–

1

r5
12v

3
+

»

−
1

48π
+

π3

576

–

1

r6
12v

4
+

»

1

60π
−

73π3

10800
−

π5

2835

–

1

r7
12v

5

+

»

−
1

72π
+

343π3

12960
+

11π5

3888

–

1

r8
12v

6
+

»

1

84π
−

769π3

8640
−

2285π5

127008
−

π7

2016

–

1

r9
12v

7

+

»

−
1

96π
+

1169π3

4608
+

15025π5

145152
+

1111π7

172800

–

1

r10
12v

8
+ (v ↔ v) + O

„

1

r11
12

«

We divide
∂ log detr

core

∂r12
into two parts

∂ log detr1
core

∂r12
and

∂ log detr2
core

∂r12

∂ log detr1core
∂r12

=

»

3

8
−

π2

9

–

1

r2
12v

+

»

−
3

8
+

π2

9
−

11π4

1890

–

1

r3
12v

2
+

»

2873

6720
−

7π2

144
+

437π4

75600
+

2π6

2205

–

1

r4
12v

3
(28)

+

»

−
33

70
−

19π2

144
+

10693π4

302400
−

547π6

52920

–

1

r5
12v

4
+

»

215

448
+

149π2

288
−

1651π4

21600
+

1321π6

26460

–

1

r6
12v

5

+

»

−
353π2

288
+

38939π4

138240
+

8023081π6

121927680
+

143π8

32256

–

1

r7
12v

6

+

»

32687

71680
+

77π2

32
+

412879π4

460800
+

386711π6

564480
+

7049π8

108000

–

1

r8
12v

7

+

»

−
153973

337920
−

407π2

96
−

4711609π4

1382400
−

368419π6

145152
−

2376127π8

4536000
−

8461π10

1372140

–

1

r9
12v

8

+

»

77537

168960
+

111π2

16
+

50991947π4

4838400
+

630755π6

72576
+

14417821π8

4536000
+

27623π10

177870

–

1

r10
12v

9
+ (v ↔ v) + O

„

1

r11
12

«
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∂ log detr2core
∂r12

=

»

5

2π
+

γE

π
+

π

36
+

log(vR/π)

π

–

1

r2
12

+
1

π

1

r3
12v

−
1

2π

1

r4
12v

2
+

»

1

3π
−

π3

180

–

1

r5
12v

3
(29)

+

»

−
1

4π
+

π3

48

–

1

r6
12v

4
+

»

1

5π
−

73π3

900
−

4π5

945

–

1

r7
12v

5
+

»

−
1

6π
+

343π3

1080
+

11π5

324

–

1

r8
12v

6

+

»

1

7π
−

769π3

720
−

2285π5

10584
−

π7

168

–

1

r9
12v

7
+

»

−
1

8π
+

1169π3

384
+

15025π5

12096
+

1111π7

14400

–

1

r10
12v

8

+(v ↔ v) + O

„

1

r11
12

«

∂ log detscore
∂r12

=

»

1

18π
+

γE

3π
+

π

108
+

log(vR/π)

3π

–

1

r2
12

+
1

3πr3
12v

−
1

6πr4
12v

2
+

»

1

9π
−

π3

540

–

1

r5
12v

3
(30)

+

»

−
1

12π
+

π3

144

–

1

r6
12v

4
+

»

1

15π
−

73π3

2700
−

4π5

2835

–

1

r7
12v

5
+

»

−
1

18π
+

343π3

3240
+

11π5

972

–

1

r8
12v

6

+

»

1

21π
−

769π3

2160
−

2285π5

31752
−

π7

504

–

1

r9
12v

7
+

»

−
1

24π
+

1169π3

1152
+

15025π5

36288
+

1111π7

43200

–

1

r10
12v

8

+(v ↔ v) + O

„

1

r11
12

«

Analogously, we divide
∂ log detm

core

∂r12
into two parts

∂ log detm1

core

∂r12
and

∂ log detm2

core

∂r12
. It is very convenient to extract the

factor
`

1 + r12vv

2π

´
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