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Abstract

Total resummation of leading logarithms of x contributing to the spin-dependent struc-
ture function g1 ensures its steep rise at small x. DGLAP lacks such a resummation. Instead,
it is complemented by special phenomenological fits for the initial parton densities. The sin-
gular factors x−α in the fits mimic the resummation and also ensure the steep (power-like)
rise of g1 at the small-x region. Furthermore, DGLAP by definition cannot describe the
region of small Q2 whereas our approach can do it.

1 Introduction

The Standard Approach (SA) for theoretical investigation of DIS structure function g1(x,Q2)
involves DGLAP[1] and Standard fits[2] for the initial parton densities. In the SA framework,
gDGLAP
1 is a convolution of the coefficient functions CDGLAP and evolved (with respect to

Q2) parton distributions which are also expressed as a convolution of the splitting functions
PDGLAP and initial parton densities. The latter are found from experimental data at large x,
x ∼ 1 and Q2 ∼ 1 GeV2. As a result, SA accounts for the Q2 -evolution through the DGLAP
evolution equations whereas the x -evolution is accounted for through the fits which are found
from phenomenological considerations. The reason for such asymmetric treating the Q2 and
x -evolutions in SA is that DGLAP was originally constructed for operating at large x where
x- contributions from higher loops were small and could be neglected. In other words, the
x -evolution can be neglected at large x. However, in the small-x region the situation looks
opposite: logarithms of x are becoming quite sizable and should be accounted to all orders in
αs. The total resummation of leading logarithms of x was first done in Refs. [3] in the double-
logarithmic approximation so that αs was kept fixed at an unknown scale and later in Refs. [4]
where the running αs effects were accounted for. Contrary to DGLAP where

αDGLAP
s = αs(Q

2), (1)

Ref. [4] used the parametrization of αs suggested in Ref. [5] because the DGLAP parametrization
of Eq. (1) cannot be used at small x. The parametrization of Ref. [5] is universally good for
both small x and large x. It converge to the DGLAP- parametrization at large x but differs
from it at small x.

Nevertheless, it is known that, despite DGLAP lacks the total resummation of lnx, it
successfully operates at x � 1. As a result, the common opinion was formed that not only the
total resummation of DL contributions in Refs. [3] but also the much more accurate calculations
performed in Refs. [4] should be out of use at available x and might be of some importance in
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a distant future at extremely small x. In Ref. [6] we argued against such a point of view and
explained why SA can be so successful at small x: in order to be able to describe the available
experimental data, SA uses the singular fits of Refs. [2] for the initial parton densities. Singular
factors x−a in the fits mimic the total resummaton of Refs. [4]. Using the results of Ref [4]
allows to simplify the rather sophisticated structure of the standard fits.

Another essential difference between SA and our description of g1 is the obvious fact that
DGLAP works at the kinematic regions of large Q2 whereas our approach is valid for large and
small Q2. The latter is important in particular for theoretical explanation of the COMPASS
collaboration results. In Ref. [7] we showed that g1 practically does not depend on x at small x,
even at x � 1. Instead, it depends on the total invariant energy 2pq. Experimental investigation
of this dependence is extremely interesting because according to our results g1, being positive
at small 2pq, can turn negative at greater values of this variable. The position of the turning
point is sensitive to the ratio between the initial quark and gluon densities, so its experimental
detection would enable to estimate this ratio.

2 Difference between DGLAP and our approach

In DGLAP, g1 is expressed through convolutions of the coefficient functions and evolved parton
distributions. As convolutions look simpler in terms of integral transforms, it is convenient to
represent g1 in the form of the Mellin integral. For example, the non-singlet component of g1

can be represented as follows:

gNS
1 DGLAP (x,Q2) = (e2

q/2)

∫ ı∞

−ı∞

dω

2ıπ
(1/x)ωCDGLAP (ω)δq(ω) exp

[

∫ Q2

µ2

dk2
⊥

k2
⊥

γDGLAP (ω, αs(k
2
⊥))

]

(2)
with CDGLAP (ω) being the non-singlet coefficient functions, γDGLAP (ω, αs) the non-singlet
anomalous dimensions and δq(ω) the initial non-singlet quark densities in the Mellin (momen-
tum) space. The expression for the singlet g1 is similar, though more involved. Both γDGLAP

and CDGLAP are known in first two orders of the perturbative QCD. Technically, it is simpler
to calculate them at integer values of ω = n. In this case, the integrand of Eq. (2) is called
the n-th momentum of gNS

1 . When the moments for different n are known, gNS at arbitrary
values of ω is obtained with interpolation of the moments. Expressions for the initial quark
densities are defined from phenomenological consideration, with fitting experimental data at
x ∼ 1. Eq. (2) shows that γDGLAP govern the Q2- evolution whereas CDGLAP evolve δq(ω)
in the x-space from x ∼ 1 into the smallx region. When, at the x-space, the initial parton
distributions δq(x) are regular in x, i.e. do not → ∞ when x → 0, the small-x asymptotics of
g1 DGLAP is given by the well-known expression:

gNS
1 DGLAP , gS

1 DGLAP ∼ exp
[

√

ln(1/x) ln
(

ln(Q2/µ2)/ ln(µ2/Λ2
QCD)

) ]

. (3)

On the contrary, when the total resummation of the double-logarithms (DL) and single- loga-
rithms of x is done[5], the Mellin representation for gNS

1 is

gNS
1 (x,Q2) = (e2

q/2)

∫ ı∞

−ı∞

dω

2πı
(1/x)ωCNS(ω)δq(ω) exp

(

HNS(ω) ln(Q2/µ2)
)

, (4)

with new coefficient functions CNS ,

CNS(ω) =
ω

ω − H
(±)
NS (ω)

(5)
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and anomalous dimensions HNS,

HNS = (1/2)
[

ω −
√

ω2 − B(ω)
]

(6)

where
B(ω) = (4πCF (1 + ω/2)A(ω) + D(ω))/(2π2) . (7)

D(ω) and A(ω) in Eq. (7) are expressed in terms of ρ = ln(1/x), η = ln(µ2/Λ2
QCD), b =

(33 − 2nf )/12π and the color factors CF = 4/3, N = 3:

D(ω) =
2CF

b2N

∫

∞

0
dρe−ωρ ln

(ρ + η

η

)

[ ρ + η

(ρ + η)2 + π2
∓

1

η

]

, (8)

A(ω) =
1

b

[ η

η2 + π2
−

∫

∞

0

dρe−ωρ

(ρ + η)2 + π2

]

. (9)

HS and CNS account for DL and SL contributions to all orders in αs. When x → 0,

gNS
1 ∼

(

x2/Q2
)∆NS/2

, gS
1 ∼

(

x2/Q2
)∆S/2

(10)

where the non-singlet and singlet intercepts are ∆NS = 0.42, ∆S = 0.86. The x- behavior of
Eq. (10) is much steeper than the one of Eq. (3). Obviously, the total resummation of logarithms
of x leads to the faster growth of g1 when x decreasing compared to the one predicted by DGLAP,
providing the input δq in Eq. (2) is a regular function of ω at ω → 0.

3 Structure of the standard DGLAP fits

Although there are different fits for δq(x) in literature, all available fits include both regular and
singular factors when x → 0 (see e.g. Refs. [?] for detail). For example, the typical expression
is

δq(x) = Nηx−α
[

(1 − x)β(1 + γxδ)
]

, (11)

with N, η being a normalization, α = 0.576, β = 2.67, γ = 34.36 and δ = 0.75. In the ω -space
Eq. (11) is a sum of pole contributions:

δq(ω) = Nη
[

(ω − α)−1 +
∑

mk(ω + λk)
−1

]

, (12)

with λk > 0, so that the first term in Eq. (12) corresponds to the singular factor x−α of
Eq. (11). When the fit Eq. (11) is substituted in Eq. (2), the singular factor x−α affects the
small -x behavior of g1 and changes its asymptotics Eq. (3) for g1 for the Regge asymptotics.
Indeed, the small- x asymptotics is governed by the leading singularity ω = α, so

g1 DGLAP ∼ C(α)(1/x)α
(

(ln(Q2/Λ2))/(ln(µ2/Λ2))
)γ(α)

. (13)

Obviously, the actual DGLAP asympotics of Eq. (13) is of the Regge type, it differs a lot from
the conventional DGLAP asympotics of Eq. (3) and looks similar to our asymptotics given by
Eq. (10): incorporating the singular factors into DGLAP fits ensures the steep rise of gDGLAP

1

at small x and thereby leads to the success of DGLAP at small x. Ref. [6] demonstrates
that without the singular factor x−α in the fit of Eq. (11), DGLAP would not be able to
operate successfully at x ≤ 0.05. In other words, the singular factors in DGLAP fits mimic the
total resummation of logarithms of x of Eqs. (4,10). Although both (13) and (10) predict the
Regge asymptotics for g1, there is a certain difference between them: Eq. (13) predicts that the
intercept of gNS

1 should be α = 0.57. As α is greater than the non-singlet intercept ∆NS = 0.42,
the non-singlet gDGLAP

1 grows, when x → 0, faster than our predictions. However, such a rise
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is too steep. It contradicts the results obtained in Refs. [4] and confirmed by several groups
fitting HERMES data. Usually, the DGLAP equations for the non-singlets are written in the
x-space as convolutions of splitting functions Pqq with evolved parton distributions ∆q and the
latter are written as another convolution:

∆q(x) = Cq(x, y) ⊗ δq(y), (14)

with Cq being the coefficient function. Written in this way, ∆q is sometimes believed to be less
singular than δq because of the evolution. However applying the Mellin transform to Eq. (14)
immediately disproves it.

4 g1 at small x and small Q2

The COMPASS experiment measures the singlet g1 at x ∼ 10−3 and Q2 � 1 GeV2, i.e. in
the kinematic region where it is impossible to use DGLAP. Although formulae for singlet and
non-singlet g1 are different, with formulae for the singlet being much more complicated, we can
explain the essence of our approach, using Eq. ??gnsint) for the non-singlet.

In the COMPASS experiment Q2 � µ2. The expression for g1 at such small Q2 with
logarithmic accuracy is given by Eq. (4) where the Q2 -dependence is dropped and x is replaced
by µ2/2pq, so

gNS
1 (x,Q2 . µ2) = (e2

q/2)

∫ ı∞

−ı∞

dω

2πı
(µ2/2pq)ωCq

NS(ω)δq(ω) . (15)

The expression for the g1 singlet looks similar, though e2
q should be replaced by the averaged

charge < e2
q > and CNS(ω)δq(ω) should be replaced by the sum

Cq
S(ω)δq(ω) + Cg

S(ω)δg(ω) (16)

so that δq(ω) and δg(ω) are the initial quark and gluon densities respectively and C q,g
S are the

singlet coefficient functions. Explicit expressions for C q,g
S are given in Ref. [7]. The standard

fits for δq and δg contain singular factors ∼ x−a which mimic the total resummation of leading
logarithms of x. Such a resummation leads to the expressions for the coefficient functions
different from the DGLAP ones. After that the singular factors in the fits can be dropped and
the initial parton densities can be approximated by constants:

δq ≈ Nq δg ≈ Ng , (17)

so, one can write
g1(Q

2
� µ2) ≈ (< e2

q > /2)NqG1(z) (18)

with

G1 =

∫ ı∞

−ı∞

dω

2πı
(1/z)ω

[

Cq
S + (Ng/NqCg)

]

(19)

where z = µ2/2pq. Obviously, G1 depends on the ratio Ng/Nq. The results for different values of
the ratio r = Ng/Nq, G1 are plotted in Fig. 1. When the gluon density is neglected, i.e. Ng = 0
(curve 1), G1 being positive at x ∼ 1, is getting negative very soon, at z < 0.5 and falls fast with
decreasing z. When Ng/Nq = −5 (curve 2), G1 remains positive and not large until z ∼ 10−1,
turns negative at z ∼ 0.03 and falls afterwards rapidly with decreasing z . This turning point
where G1 changes its sign is very sensitive to the magnitude of the ratio r . For instance, at
Ng/Nq = −8 (curve 3), G1 passes through zero at z ∼ 10−3. When Ng/Nq < −10, G1 is positive
at any experimentally reachable z (curve 4) . Therefore, the experimental measurement of the
turning point would allow to draw conclusions on the interplay between the initial quark and
gluon densities.
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Figure 1: G1 evolution with decreasing z = µ2/2(pq) for different values of ratio r = δg/δq:
curve 1 - for r = 0, curve 2 - for r = −5 , curve 3 -for r = −8 and curve 4 -for r = −15.

5 Conclusion

Comparison of Eqs. (3) and (13) shows explicitly that the singular factor x−α in the Eq. (11)
for the initial quark density converts the exponential DGLAP-asympotics into the Regge one.
On the other hand, comparison of Eqs. (10) and (13) demonstrates that the singular factors in
the DGLAP fits mimic the total resummation of logarithms of x. These factors can be dropped
when the total resummation of logarithms of x performed in Ref. [4] is taken into account. The
remaining, regular x-terms of the DGLAP fits (the terms in squared brackets in Eq. (11)) can
obviously be simplified or even dropped at small x so that the rather complicated DGLAP fits
can be replaced by constants. It immediately leads to an interesting conclusion: the DGLAP fits
for δq have been commonly believed to represent non-perturbative QCD effects but they actually
mimic the contributions of the perturbative QCD, so the whole impact of the non-perturbative
QCD on g1 at small x is not large and can be approximated by normalization constants. We
have used the latter for studying the g1 singlet at small Q2 because this kinematic is presently
investigated by the COMPASS collaboration. It turns out that g1 in this region depends on
z = µ2/2pq only and practically does not depend on x. Numerical calculations show that the
sign of g1 is positive at z close to 1 and can remain positive or become negative at smaller z,
depending on the ratio between δg and δq. It is plotted in Fig. 1 for different values of δg/δq.
Fig. 1 demonstrates that the position of the sign change point is sensitive to the ratio δg/δq, so
the experimental measurement of this point would enable to estimate the impact of δg.
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