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Abstract

The QED and QCD vacuum energy in a self-dual field with constant strength is consid-
ered. It is turned out that in the quantum electrodynamics of a system of charged fermion
and boson fields the minimum of vacuum energy is realized with zero self-dual photon field if
the number of fermions exceeds the number of bosons and (2) the lightest charged particles
are fermions. Namely, this situation takes place in Nature.

In the QCD the global stability of the quark-gluon system takes place if the number of
quarks with different flavors is equal to or more than two. The existence of massless self-
interacting gluons leads to the QCD vacuum which can be realized with nonzero self-dual
gluon fields. The result is the analytical confinement of quarks and gluons, i.e. quark and
gluon propagators are entire analytical functions in p2- complex plane, and the origin of
stable states - hadrons.

It is shown that in the framework of analytical confinement, when quark and gluon
propagators are induced by a vacuum self-dual gluon field with constant strength, the masses
of meson with quantum numbers Q = JP and quark constituents m1, m2 are described with
reasonable accuracy by the formula

MQ(m1,m2) = (m1 +m2)

[

1 +
AQ

(m2
1

+ 1.13m1m2 +m2
2
)0.625

]

,

where a constant positive parameter AQ is unique for all mesons with quantum numbers
Q = JP .

Sets of mesons JP = 0−, 1−, 0+, 1+, 2+, 3− for n = 0 and 1−, 2+ for n > 0 and
different flavor constituent quarks (u = d, s, c, b) are considered.

PACS: 11.10.Lm, 11.10.St, 12.38.Aw, 14.40.-n, 14.65.-q.

1 Introduction.

The basic problem of modern particle physics yet unsolved is to explain the structure of hadrons
as bound states of quarks and gluons in the framework of QCD. The main difficulty lies in the
fact that QCD itself does not give a clear analytical picture of the behavior of quarks and
gluons in the so-called confinement region where their hadronization takes place. For QCD this
region is the domain of a strong coupling regime where reliable analytical methods for successful
calculations are absent. One should remark that analytical strong coupling methods are missing
not only for QCD but for any quantum field model too.

In most approaches within the standard QCD (see, for example, chiral dynamics approach
[1, 2, 3, 4]) different symmetry arguments are used to avoid direct calculations in the confinement
region and thus to obtain some effective hadron theory with new phenomenological constants
like Fπ and so on.
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The approaches (see [5, 6]), which try to draw a connection between QCD and hadron
characteristics, use the Schwinger-Dyson equation to get the quark Green function in the con-
finement region (for this aim an appropriate form of the gluon propagator and quark-gluon
vertex should be found) and then use the Bethe-Salpeter equation to calculate the spectrum
and other characteristics of hadrons as bound states of quarks and gluons. Practically from
the beginning this program leads to numerical calculations so that the analytical picture of the
confinement and hadronization is not so transparent.

In any case, this program starts from the physical viewpoint that confinement and hadroniza-
tion of quarks take place at the same distances. Therefore, the knowledge of the behavior of
quark and gluon propagators at these distances gives a direct way of calculating meson masses
and other meson characteristics using the Bethe-Salpeter equation in the ladder approximation
implying that the coupling constant αs is small enough.

I completely share this point of view. Physically, if bound states are formed at large dis-
tances, where confinement plays the main role, it is evident that a correct description of con-
finement should lead to a reasonable description of bound states. The basic point is how to
find the quark and gluon propagators in the confinement region. The standard point of view
is the quark confinement is a result of nonperturbative self-interaction of gluons. This idea
is used in approaches mentioned above [5, 6]. However, another point of view is possible. In
papers [9, 10, 11, 8] we developed a model based on the assumption that the QCD vacuum is
realized by a self-dual homogeneous vacuum gluon field which is the classical solution of the
Yang-Mills equations. This field is not connected with the QCD coupling constant and the
principal statement is that the minimum of vacuum energy of a quark and gluon system is
realized by a nonzero self-dual homogeneous gluon field. The propagators of quarks and gluons
in this field can be calculated in the explicit form and they are entire analytic functions in the
p2-complex plain. It means that the self-dual homogeneous vacuum gluon field leads to the
analytic confinement of quarks.

One of nonevident features of this field consists in the following. One can ask why this field
does exist in QCD and leads to the quark confinement but why a similar field does not exist
for the photon field in QED and we do not observe the confinement of electrons, for example?

It is possible to introduce a self-dual homogeneous photon field leading to electron confine-
ment in QED, where any local self-interaction of photons is absent. Then the vacuum energy
of a system of charged particles under consideration in this field should be calculated. It was
shown (see [7]) that in QED, first, the global stability of a system of charged particles takes place
if the number of charged fermions exceeds the number of charged bosons. Second, in QED the
minimum of the vacuum energy of a system of charged fermions and bosons is realized with zero
self-dual photon field (no confinement) if the lightest charged particles are fermions. Namely,
this situation takes place in the Nature. This result explains why all stable basic particles
(leptons and baryons) are fermions and the lightest charged stable particle is electron.

In QCD due to the local self-interaction gluons play a double role - they are carriers of
strong interaction and they are standard vector boson particles with zero mass. In QCD, the
global stability of a quark-gluon system takes place if the number of quarks with different flavors
is equal or is more than two. Maybe this is the reason why the SU2 isotopic flavor group of
the lightest u and d quarks is picked out? The minimum of the vacuum energy of a system of
quarks and gluons is realized with nonzero self-dual gluon field. It is a direct consequence of
the existence of massless self-interacting gluons. As a result, this field leads to the quark and
gluon confinement.

One can add that the standard physical picture of the confinement is understood as the
existence of a static increasing potential between two quarks. The problem of confinement of
one single quark is not formulated at all. This picture is stable in time.

In the case of the analytical confinement induced by a self-dual homogeneous gluon field
the physical picture of the confinement looks different from previous one. Quark and gluons
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are fluctuations in space and time. They arise in a small space region and disappear in a short
time interval. In other words, the confinement exists in space and time. One can think that in
some sense quarks and gluons themselves realize a physical hadron vacuum (details see in [8]).

The manifestation of this gluon configuration in the spectrum and weak decays of light
mesons, their excited states, and glueballs was studied in papers [10, 12, 13, 17, 8]. Our
preliminar calculations showed that a self-dual homogeneous gluon field could be considered as
a good candidate for realization of the QCD gluon vacuum. However, any calculations in this
model are quite cumbersome, so that it is difficult to ”see forest among trees”. I have always
hold to the point of view that if a physical theoretical model is reasonable, then simple formulas
describing some general physical correlations should exist. I try to realize this idea in the present
paper. The point is that the quark propagator in a self-dual homogeneous gluon field has a
quite specific form and this specific behavior can lead to nontrivial correlations between meson
masses.

One should stress that the analytical confinement leads to a mechanism of forming bound
states which is quite different comparable to a potential picture. In addition, one can remark
that any potential approach in particle physics is a very rough approximation because calcu-
lations in framework of the relativistic Bethe-Salpeter equation show that the nonrelativistic
limit can be realized only for very small coupling constants as in QED where α = 1

137 , but not
in QCD where αs ∼ 1 (see [14]).

Let us turn to physical reality and consider the meson mass spectrum in the Meson Summary
Table in the Particle Data Group [15]. Each meson has certain quantum numbers Q = (J P , n),
where J is the total moment, P is parity and n = 0, 1, 2, ... is a radial quantum number. From a
theoretical point of view mesons are bound states of two quarks q1 and q2 with different flavors,
i.e. with different masses m1 and m2. Then J = `, ` ± 1 where ` = 0, 1, 2, ... is the orbital
moment of two quark systems. Mesons are described by currents of the type

JN = JFQ = (q̄1VQq2),

with a definite quantum number N = FQ, Q = (JP , n), where F is a flavor and VQ = V(JP ,n)

is a relevant vertex which does not depend on flavor.
We can assume that the structure of dynamic equations is the same for mesons with a fixed

quantum number Q = (JP , n) but different flavor quarks m1 amd m2. In other words, the
meson mass should be described by the formula

MN = MFQ = FQ(m1,m2),

where the functions FQ(m1,m2) are different for different quantum numbers Q = (JP , n).
We accept the hypothesis that the self-dual homogeneous gluon field really realizes the QCD

gluon vacuum. This idea leads to analytical confinement. Quark and gluon propagators can
be calculated in an explicit form. Thus the explicit form of the function FQ(m1,m2) can be
evaluated. The specific form of the quark propagators (see below) leads to that the function
FQ(m1,m2) with acceptable accuracy has the form

FQ(m1,m2) = F(m1,m2, AQ), (1)

where F(m1,m2, A) is a universal function the form of which does not depend on a quantum
state Q = (JP , n). The constant parameter AQ defines the quantum state and it is unique
for all mesons with a given quantum number Q = (JP , n). It means that formula (1) is valid
for excited states too. Different masses m1 and m2 in reality define different flavor quantum
numbers of the state under consideration. We should like to stress that formula (1) is dictated
by the specific form of the quark propagator in a self-dual homogeneous vacuum gluon field.

Let us come back to the Meson Summary Table in the Particle Data Group. In order to verify
formula (1), we should select sets of mesons having the same quantum numbers Q = (J P , n)
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but different flavor constituents. For mesons with the zero radial number n = 0 there are
only five sets with definite quantum numbers JP which have as constituents all four quarks
u = d, s, c, b. These sets are: pseudoscalar 0− - ten mesons, vector 1− - eight mesons, scalar
0+ - four mesons, axial 1+ - five mesons, and tensor 2+ - six mesons (see Section 3). In addition,
we consider tensor multiplet 3− (n = 0) containing three light mesons. We remark, the mesons
2+ and 3− are excited states.

For the radial numbers n > 0 only sets of vector mesons 1− have as constituents all four
quarks u = d, s, c, b. Four mesons 2+ having as constituents quarks u = d, s, b can be
considered as states with n = 1.

The aim of this paper is to show that the representation (1) really takes place, i.e., this
formula describes with reasonable accuracy sets of mesons with fixed quantum numbers Q and
different quark constituents. Besides, we clarify the conditions providing this formula.

2 Bethe-Salpeter equation,

analytical confinement and meson masses

Calculation of the massM of a meson bound states with a quantum numberQ of two constituent
quarks with masses m1 and m2 in the framework of the Bethe-Salpeter equation in the ladder
approximation is reduced to the diagonalization of the kernel (see [9, 8])

−1 = g2
Tr(VQS1VQS2) =

αs

π

∫∫

dy1dy2VQ(y1)ΦJ,1,2(y1 − y2|p)VQ(y2),

(2)

where

ΦJ,1,2(y1 − y2|p) =

∫

dx ei(px)Tr [ΓJS1(x+ µ2(y1 − y2))ΓJS2(x− µ1(y1 − y2))]

where the quark-antiquark vertex ΓJ defines the corresponding quantum numbers of a bound
states under consideration.

All calculations will be performed in the Euclidean space R
4.

The quark propagator is chosen in the form induced by a vacuum self-dual gluon field with
constant strength (for details see Appendix and [9, 8])

S(y,m) =
Λ2

8π2

1
∫

0

du

u2
S̃(y,m, u) · e−

Λ2y2

2u ·

(

1 − u

1 + u

)
m2

4Λ2

. (3)

The parameter Λ defines the confinement scale. The explicit form of the polynomial S̃(y,m, u)
in variables y and m will not be important in our calculations here but it can be found in [9].

The other parameters are

p2 = −M2, µ =
M

m1 +m2
, µ1 =

m1

m1 +m2
, µ2 =

m2

m1 +m2
.

The vertex function VQ is determined by the solution of the Bethe-Salpeter equation, but
with acceptable accuracy it can be approximated at large distances y2 ∼ 1

Λ2 by

VQ(y) ∼ D(y) ≈ D0 e
−Λ2

2
y2
. (4)

Thus, the mass of a bound state with the quantum number Q is defined by the equation

−1 =
αs

π

∫

dy D2
0e

−
y2

4

∫

dx ei(px)Tr [ΓQS1(x+ µ2y)ΓQS2(x− µ1y)] (5)

=
αs

π

∫

1
∫

0

du1du2PQ(u1, u2, µ, µ1, µ2)e
(m1+m2)2

2Λ2 E(µ,µ1,µ2,u1,u2).
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Here PQ(u1, u2, µ, µ1, µ2) is a polynomial in parameters µ, µ1, µ2 and its explicit form is defined
by the spin structure of vertices and quark propagators. The quantum numbers Q = (J P , n) of
bound states are defined by these polynomials. The explicit form of these polynomials will not
be important in our arguments.

The function

E(µ, µ1, µ2, u1, u2) (6)

= µ2 ·
u1u2 + 2(µ2

1u1 + µ2
2u2)

u1 + u2 + 2
−
µ2

1

2
ln

(

1 + u1

1 − u1

)

−
µ2

2

2
ln

(

1 + u2

1 − u2

)

.

plays the main role in equation (5) and its behavior defines the meson mass spectrum. It is
important that this function depends on masses of constituent quarks m1 and m2 and does not
depend on quantum numbers of bound states, so that we can hope that the main features of a
set of mesons with the same quantum number Q = (JP , n) are defined by masses of constituent
quarks only.

The masses of all mesons, except pion π and kaon K, have masses more than sum of masses
of constituent quarks, i.e. µ = M

m1+m2
> 1, i.e. the function E is positive and has a positive

maximum at a point 0 < u
(0)
1 < 1, 0 < u

(0)
2 < 1. Thus, one can write approximately

∫

1
∫

0

du1du2PQ(u1, u2, ...)e
(m1+m2)2

2Λ2 E(µ,µ1,µ2,u1,u2) ≈ CQe
(m1+m2)2

2Λ2 E(M,m1,m2),

where

(m1 +m2)
2E(M,m1,m2) = max

u1,u2

(m1 +m2)
2E(µ, µ1, µ2, u1, u2)

≈
[

1.37m2
1 + 1.55m1m2 + 1.37m2

2

]

(

M

m1 +m2
− 1

)1.6

.

Thus, equation (5) can be approximated by

1 ≈
αs

π
CQe

(m1+m2)2

2Λ2 E(M,m1,m2). (7)

The solution of this mass equation requires a weak coupling regime αs < 1.
The approximate formula, which determines the mass of a meson in a quantum state Q =

(JP , n) with constituent quarks with masses m1 and m2, looks like

MQ(m1,m2) ≈ (m1 +m2)

[

1 +
AQ

(

m2
1 + 1.13m1m2 +m2

2

)0.625

]

. (8)

Here the positive constant AQ is the same for all mesons with a given fixed quantum number
Q = (JP , n).

Now we should check this formula for real meson spectrum.

3 Meson masses

Let us choose in the Table Particle Group Data [15] mesons with the same quantum numbers
but with different flavor masses. Mesons Q = (JP , n) can be represented in the form

M(JP , n) ⇒









uVQū uVQs̄ uVQc̄ uVQb̄
sVQs̄ sVQc̄ sVQb̄

cVQc̄ cVQb̄
bVQb̄









. (9)
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3.1 Basic mesons with radial quantum number n = 0

In the Table Particle Group Data [15] for the radial quantum number n = 0 there are only five
sets of mesons with fixed JP having all four constituent quarks u = d, s, c, b

P (0−, 0) =









η(547) D(1869) B(5279)
η′(957) Ds(1968) Bs(5369)

ηc(2979) Bc(6400)
ηb(9300)









;

V (1−, 0) =









ρ, ω(782) K∗(892) D∗(2007) B∗(5325)
φ(1020) D∗

s(2112) −
J/ψ(3100) −

Υ(1S)(9460)









;

S(0+, 0) =









f0(980) − − −
f0(1370) − −

χc0(3415) −
χb0(9893)









;

A(1+, 0) =









a1(1260) K1(1270 ÷ 1400) − −
f1(1420) − −

χc1(3510) −
χb1(9892)









;

D(2+, 0) =









f2(1270) K∗
2 (1430) D∗

2(2460) −
f ′2(1525) − −

χc2(3556) −
χb2(9912)









.

In our table we consider that η = (uū) and η ′ = (ss̄).
Here we shall consider mesons masses of which are larger then the sum of the masses of

constituent quarks and should be described by formula (8). The light pseudoscalar mesons
π and K are unique mesons the masses of which are smaller than the sum of the masses of
constituent quarks. Therefore they are not described by formula (8).

In addition, we consider three excited states 3−:

T (3−, 0) =

(

ω3(1670) K∗
3 (1780)

φ3(1850)

)

.

We will show that the masses of all these mesons with reasonable accuracy are described
formula (8). Our parameters, which should be determined by fitting, are masses of constituent
quarks mu = md, ms, mc, mb (4 parameters) and parameters AP , AV , AS , AA, AD, AT (6
parameters).

Our calculations consist in the following. We choose the quark masses according to Table 1
and calculate the constant AQ for each the known set of mwsons with quantum number Q by
formula

OQ =
1

NQ

∑

f1,f2:u,s,c,b

[

1 −
MQ(mf1 ,mf2 , AQ)

(MQ,f1,f2)exp

]2

, (10)

where NQ is the number of known mesons with the quantum number Q. Value of OQ gives
the accuracy of our approximation for each given quantum number Q. The results are given in
Table 2 and Figures 1-6.
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Table 1. Quark masses.

mf mu ms mc mb

Mev 260 434 1506 4732

Table 2. Parameters AQ and OQ for states with n = 0.

Q = JP P = 0− V = 1− S = 0+ A = 1+ D = 2+ T = 3−

AQ(Gev1.25) 0.0216 0.217 0.249 0.527 0.618 0.838
OQ · 10−3 11 2.6 12 2.3 1.9 0.16

3.2 Radial exitations n > 0

Vector mesons 1− (ρ = uū, ψ = cc̄, Υ = bb̄) have the most large number of radial excitations
n = 0 ÷ 5. We compute constants AV (n) for n = 0 ÷ 4. The dependence of these constants on
the radial quantum number n can be fitted by

AV (n) ≈ 0.1897 + 0.3236 ln(n+ 1) + 0.1634n.

This formula gives the constant AV (5) = 1.574 for n = 5. Then the meson masses for n = 5 can
be calculated. One can see that the agreement with the experimental masses is quite reasonable.

The results of calculations are given in Table 3.

Table 3. Radial excitations for vector 1− mesons. The second number is the calculated meson
mass in Mev.

n ρ = uū ψ = cc̄ Υ = bb̄ AV OV

0 ρ(770) - 778 J/ψ(3100) - 3178 Υ(1S)(9460) - 9589 0.188 0.0079

1 ρ(1450) - 1323 ψ(2S)(3655) - 3530 Υ(2S)(10023) - 9853 0.585 0.0037

2 ρ(1700) - 1699 ψ(3770) - 3772 Υ(3S)(10365) - 10035 0.859 0.0011

3 ρ(1900) - 2081 ψ(4040) - 4018 Υ(4S)(10580) - 10220 1.137 0.0034

4 ρ(2150) - 2390 ψ(4160) - 4217 Υ(10860) - 10370 1.362 0.0049

5 ρ(−) - 2698 ψ(4415) - 4416 Υ(11020) - 10518 1.574 −
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There are four tensor mesons 2+ with the radial quantum numbers n = 1

D1(2+, 1) =









f2(1565) K∗
2 (1980) − −
f2(2010) − −

− −
χb2(2P )(10268)









.

Results of calculations are given in Table 4.

Table 4. Tensor mesons 2+.

n = 0 n = 1

uū f2(1270) - 1336 f2(1565) - 1737

us̄ K∗
2 (1430) - 1445 K∗

2 (1980) - 1818

ss̄ f ′2(1525) - 1586 f2(2010) - 1939

sc̄ D∗
2(2460) - 2320 − - 2772

cc̄ χc2(1P )(3556) - 3537 − - 3796

bb̄ χb2(1P )(9912) - 9859 χb2(2P )(10268) - 10053

AD (Gev)1.25 0.594 0.886

OD 0.0013 0.0051

4 Conclusion.

Our results can be formulated as follows:

• Confinement - quarks and gluons are fluctuations in time-space.

• Stability in a self-dual homogeneous field:

– no confinement in QED - all basic particles are fermions
and electron has the lowest mass;

– confinement in QCD - gluons have zero mass.

• The structure of the quark propagetor in gluon vacuum field
predetermines main features of meson spectrum.

• If mesons are described by quark currents of the type (q̄1VQq2) the formula (8) correctly
describes the mass dependence of mesons on masses of constituent quarks.

• The (anti)self-dual homogeneous field is a good candidate
to be the vacuum gluon field.

This paper is supported by RFFR grant N ◦ 04-02-17370.
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