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Abstract

One of the most important results of the axiomatic quantum field theory - the gener-
alized Haag theorem - is proven in S O (1, 1) invariant quantum field theory, of which an
important example is noncommutative quantum field theory. In S O (1, 3) invariant theory
new consequences of generalized Haag’s theorem are obtained: it is proven that the equality
of four-point Wightman functions in two theories leads to the equality of elastic scattering
amplitudes and thus total cross-sections in these theories.

1 Introduction

Quantum field theory (QFT) as a mathematically rigorous and consistent theory was formulated
in the framework of the axiomatic approach in the works of Wightman, Jost, Bogolyubov, Haag
and others ([1] - [5]).

Within the framework of this theory, on the basis of most general principles such as Poincaré
invariance, local commutativity and spectrality, a number of fundamental physical results, for
example, the CPT-theorem and the spin-statistics theorem were proven, analytical properties of
scattering amplitudes in energy and angular variables were established and a number of rigorous
bounds on high energy behavior of such amplitudes were obtained [1] - [3], [6]. Haag’s theorem
[7, 8] (see also [1, 3]) is one of the most novel results in the axiomatic approach in quantum
field theory (QFT). During the recent years the different generalizations of the standard QFT
have been widely considered.

Noncommutative quantum field theory (NC QFT) is one of these generalizations of standard
QFT which has been intensively developed during the past years (for reviews, see [9, 10]). The
idea of such a generalization of QFT ascends to Heisenberg and it was initially developed in
Snyders work [11]. The present development in this direction is connected with the construction
of noncommutative geometry [12] and new physical arguments in favour of such a generalization
of QFT [13]. Essential interest in NC QFT is also due to the fact that in some cases it is obtained
as a low-energy limit of string theory [14]. The simplest and at the same time most studied
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version of noncommutative field theory is based on the following Heisenberg-like commutation
relations between coordinates:

[x̂µ, x̂ν ] = i θµν , (1)

where θµν is a constant antisymmetric matrix.
It is known that the construction of NC QFT in a general case (θ0i 6= 0) meets serious

difficulties with unitarity and causality [16] - [19]. For this reason the version with θ0i = 0
(space-space noncommutativity), in which there are no such difficulties and which is a low-
energy limit of the string theory, draws special attention. Then always there is a system of
coordinates, in which only θ12 = −θ21 6= 0. Thus, when θ0i = 0, without loss of generality it is
possible to choose the coordinates x0 and x3 as commutative and the coordinates x1 and x2 as
noncommutative ones.

The relation (1) breaks the Lorentz invariance of the theory, while the symmetry under the
SO (1, 1)⊗ SO (2) subgroup of the Lorentz group survives [18]. Translational invariance is still
valid. Remark that when θ0i = 0, the group of symmetry of the theory is O (1, 1) ⊗ SO (2).
However, in order to obtain the results of this paper it is sufficient to use only the weaker
requirement of SO (1, 1) invariance, though we consider the case when θ0i = 0. Below we shall
consider the theory to be SO (1, 1) invariant with respect to the coordinates x0 and x3. Besides
these classical groups of symmetry, in the paper [20] it was shown that the noncommutative field
theory with the commutation relation (1) of the coordinates, and built according to the Weyl-
Moyal correspondence, has also a quantum symmetry, namely the twisted Poincaré invariance.

In the works [21] - [23], in which θ0i = 0, the Wightman approach was formulated for NC
QFT. For scalar fields the CPT theorem and the spin-statistics theorem were proven.

In [21] it was proposed that Wightman functions in the noncommutative case can be written
down in the standard form

W (x1, . . . , xn) = 〈Ψ0, ϕ(x1) . . . ϕ(xn)Ψ0 〉, (2)

where Ψ0 is the vacuum state. However, unlike the commutative case, these Wightman functions
are only SO (1, 1) ⊗ SO (2) invariant.

In [22] it was proposed that in the noncommutative case the usual product of operators in
the Wightman functions be replaced by the Moyal-type product (see also [10]). Such a product
of operators is compatible with the twisted Poincaré invariance of the theory [24] and also
reflects the natural physical assumption, that noncommutativity should change the product of
operators not only in coinciding points, but also in different ones. This follows also from another
interpretation of NC QFT in terms of a quantum shift operator [25]. In [23] it was shown that for
the derivation of some axiomatic results, the concrete type of product of operators in various
points is insignificant. It is essential only that from the appropriate spectral condition (see
formula (7)), the analyticity of Wightman functions with respect to the commutative variables
x0 and x3 follows, while x1 and x2 do not need to be complexified. The Wightman functions
can be written down as follows [23]:

W (x1, . . . , xn) = 〈Ψ0, ϕ (x1) ?̃ · · · ?̃ ϕ (xn)Ψ0〉. (3)

The meaning of ?̄ depends on the considered case, and in particular

ϕ (x)?̃ϕ (y) = ϕ (x)ϕ (y) according to [21] or

ϕ (x)?̃ϕ (y) = ϕ (x) exp

(

i

2
θµν

←−
∂

∂xµ

−→
∂

∂yν

)

ϕ (y) according to [22].

In [23] it was shown that, besides the above-mentioned theorems, in NC QFT with (θ0i = 0)
a number of other classical results of the axiomatic theory, such as the equivalence of local
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commutativity condition and symmetry of Wightman functions with respect to the rearrange-
ment of the arguments in the domain of analyticity, remain valid. In [24] on the basis of the
twisted Poincaré invariance of the theory the Haag’s theorem was obtained [7, 8] (see also [1]
and references in it).

In the present work, we consider generalized Haag’s theorem (see Theorem 4.17 in [1] or
Theorem 5.4.2 in [3]) in both S O (1, 3) and S O (1, 1) invariant theories. An important ex-
ample of the latter case is the noncommutative theory. In the S O (1, 3) invariant theory new
consequences of Haag’s theorem are found, without analogues in NC QFT.

The analysis of Haag’s theorem reveals essential distinctions between commutative and
noncommutative cases, more precisely between the S O (1, 3) and S O (1, 1) invariant theories.

At the same time it is proven that the basic physical conclusion of Haag’s theorem is valid
also in the S O (1, 1) invariant theory. Namely, if we consider two theories, in which field
operators are connected by a unitary condition at equal times, and one of these theories is a
trivial one, that is the corresponding S-matrix is equal to unity, the other is trivial as well. To
derive this result it is sufficient to assume that spectrality, local commutativity condition and
translational invariance are fulfilled only for the transformations concerning the commutative
coordinates.

In the commutative case, the conditions which relate the field operators by a unitary trans-
formation at equal times (see Section 3), whose consequence is Haag’s theorem, lead to the
equality of Wightman functions in the two theories up to four-point ones. In the present paper
it is shown that in the S O (1, 1) invariant theory, unlike the commutative case, only two-point
Wightman functions are equal. It is proven that from the equality of four-point Wightman
functions in the two theories, the equality of their elastic scattering amplitudes follows and,
owing to the optical theorem, the equality of total cross sections. In derivation of this result
local coomutativity condition (LCC) is not used.

Note that actually field operators are the smoothed operators

ϕf ≡

∫

ϕ (x) f (x) d x, (4)

where f (x) are test functions.
Taking θ0i = 0, we consider a frame in which noncommutativity does not affect the variables

x0 and x3 and it is possible to assume that after smearing over noncommutative variables the
Wightman functions are standard generalized functions (tempered distribution) with respect
to the commuting coordinates, which leads to the necessary analytical properties of Wightman
functions in these variables. It is natural to assume, as it is done in various versions of nonlocal
theory [26] - [28], that with respect to the noncommutative variables Wightman functions belong
to one of Gel’fand-Shilov spaces [29]. The concrete choice of the Gel’fand-Shilov space is not
important in the derivation of our results.

As the consideration given below for formal operator ϕ(x) coincides with the consideration
for operator ϕf , in order not to complicate formulas, we shall deal with the field operators as
if they were given at a point.

2 Basic Properties of Wightman Functions

In Wightman’s approach cyclicity of the vacuum vector is assumed. In the noncommutative
case this means that any vector of the space under consideration J can be approximated with
arbitrary accuracy by vectors of the type

ϕ(x1) ?̃ ϕ(x2) ?̃...?̃ ϕ(xn)Ψ0. (5)

For simplicity we consider the case of a real field, however, the results are easily extended
to a complex field. For reasons given below, it is important only that the scalar product
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of any two vectors 〈Φ,Ψ 〉 can be approximated by linear combination of Wightman functions
W (x1, . . . , xn) with arbitrary precision. For the results obtained below, translational invariance
only in commuting coordinates is essential, therefore we write down the Wightman functions
as:

W (x1, . . . , xn) = W (ξ1, . . . , ξn−1, X), (6)

where X designates the set of noncommutative variables x1
i , x

2
i , i = 1, . . . n, and ξi = {ξ0

i , ξ3
i },

where ξ0
i = x0

i − x0
i+1, ξ

3
i = x3

i − x3
i+1.

Let us formulate now the spectral condition. We assume that complete vector system in p

space consists only of time-like vectors with respect to momentum components P 0
n and P 3

n , i.e.
that

P 0
n ≥ |P

3
n |. (7)

The condition (7) is conveniently written as Pn ∈ V̄ +
2 , where V̄ +

2 is the set of the vectors
satisfying the condition x0 ≥ |x3|. Recall that the usual spectral condition is Pn ∈ V̄ +, i.e.
P 0

n ≥ | ~Pn|. From the condition (7) and the completeness of the system of basis vectors ΨPn
:

〈Φ,Ψ〉 =
∑

n

∫

dPn〈Φ,ΨPn
〉〈ΨPn

,Ψ〉

it follows that
∫

d a e−i p a 〈Φ, U (a)Ψ〉 = 0, if p 6∈ V̄ +
2 , (8)

where a = {a0, a3} is a two-dimensional vector, U (a) is a translation in the plane p0, p3, and
Φ and Ψ are arbitrary vectors. The equality (8) is similar to the corresponding equality in
the standard case ([1], Chap. 2.6). The direct consequence of the equality (8) is the spectral
property of Wightman functions:

W (P1..., Pn−1, X) =
1

(2π)n−1

∫

ei Pj ξj W (ξ1..., ξn−1, X) d ξ1...d ξn−1 = 0, (9)

if Pj 6∈ V̄ +
2 . The proof of the equality (9) is similar to the proof of the spectral condition in the

commutative case [1], [3]. Recall that in the latter case the equality (9) is valid, if Pj 6∈ V̄ +.
Having written down W (ξ1, . . . , ξn−1, X) as

W (ξ1..., ξn−1, X) =
1

(2π)n−1

∫

e−i Pj ξj W (P1..., Pn−1, X) dP1...d Pn−1, (10)

we obtain that, due to the condition (9), W (ν1, . . . , νn−1, X) is analytical in the ”tube” T−
n :

νi ∈ T−
n , if νi = ξi − i ηi, ηi ∈ V +

2 , ηi = {η0
i , η

3
i }. (11)

It should be stressed that the noncommutative coordinates x1
i , x2

i are always real.
The SO (1, 1) invariance of the theory allows to expand the domain of analyticity. This

expansion is similar to the transition from tubes to expanded tubes in the commutative case [1]
- [3]. According to the Bargmann-Hall-Wightman theorem, W (ν1, . . . , νn−1, X) is analytical in
the domain Tn

Tn = ∪Λc
Λc T−

n , (12)

where Λc ∈ Sc O (1, 1) is the two-dimensional analogue of the complex Lorentz group. Just as
in the commutative case, the expanded domain of analyticity contains real points xi, which are
noncommutative Jost points, satisfying the condition xi ∼ xj, which means that

(

x0
i − x0

j

)2
−
(

x3
i − x3

j

)2
< 0, ∀ i, j. (13)
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It should be emphasized that the noncommutative Jost points are a subset of the set of Jost
points of the commutative case, when

(xi − xj)
2 < 0 ∀ i, j. (14)

LCC has the same form as in the local theory at the Jost points (recall that we consider a
scalar field):

W (x1, . . . , xi, xi+1, . . . , xn) = W (x1, . . . , xi+1, xi, . . . , xn), (15)

However, in (15) xi are noncommutative Jost points, i.e. they satisfy the condition (13).

3 Generalized Haags Theorem

Recall the formulation of the generalized Haags theorem in the commutative case ([1], Theo-
rem 4.17):

Let ϕ1 (t, ~x) and ϕ2 (t, ~x) be two irreducible sets of operators, for which the vacuum vectors
Ψ1

0 and Ψ2
0 are cyclic. Further, let the corresponding Wightman functions be analytical in the

domain Tn
1.

Then the two-, three- and four-point Wightman functions coincide in the two theories if there
is a unitary operator V , such that

1) ϕ2 (t, ~x) = V ϕ1 (t, ~x)V ∗, (16)

2) Ψ2
0 = C V Ψ1

0, C ∈ IC, |C| = 1. (17)

It should be emphasized that actually the condition 2) is a consequence of condition 1) with
rather general assumptions (see Statement). In the formulation of Haags theorem it is assumed
that the operators ϕi (t, ~x) can be smeared only on the spatial variables. This assumption is
natural if θ0i = 0.

Let us consider Haags theorem in the S O(1, 1) invariant field theory and show that the
corresponding equality is true only for two-point Wightman functions.

For the proof we first note that in the noncommutative case, just as in the commutative one,
from conditions 1) and 2) it follows that the Wightman functions in the two theories coincide
at equal times

〈Ψ1
0, ϕ1 (t, ~x1) ?̃ · · · ?̃ ϕ1 (t, ~xn)Ψ1

0〉 = 〈Ψ2
0, ϕ2 (t, ~x1) ?̃ · · · ?̃ ϕ2 (t, ~xn)Ψ2

0〉. (18)

Having written down the two-point Wightman functions Wi (x1, x2), i = 1, 2 as Wi (u1, v1, u2, v2),
where ui = {x0

i , x
3
i }, vi = {x1

i , x
2
i } we can write for them equality (18) as:

W1 (0, ξ3, v1, v2) = W2 (0, ξ3, v1, v2), (19)

where ξ = u1 − u2, v1 and v2 are arbitrary vectors. Now we notice that, due to the S O(1, 1)
invariance,

Wi (0, ξ
3, v1, v2) = Wi (ξ̃, v1, v2) (20)

hence,
W1 (ξ̃, v1, v2) = W2 (ξ̃, v1, v2), (21)

where ξ̃ is any Jost point. Due to the analyticity of the Wightman functions in the commuting
variables they are completely determined by their values at the Jost points. Thus at any ξ from
the equality (21), it follows that

W1 (ξ, v1, v2) = W2 (ξ, v1, v2). (22)

1Remark that the required analyticity of the Wightman functions follows only from the spectral condition
and the S O(1, 3) invariance of the theory.
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As v1 and v2 are arbitrary, the formula (22) means the equality of two-point Wightman functions
at all values of their arguments.

Thus, for the equality of the two-point Wightman functions in two theories related by the
conditions (16) and (17), the S O(1, 1) invariance of the theory and corresponding spectral
condition are sufficient.

It is impossible to extend this proof to three-point Wightman functions. Indeed, let us
write down Wi (x1, x2, x3) as Wi (u1, u2, u3, v1, v2, v3), where vectors ui and vi are determined
as before. Equality (19) means that

W1 (0, ξ3
1 , 0, ξ3

2 , v1, v2, v3) = W2 (0, ξ3
1 , 0, ξ3

2 , v1, v2, v3), (23)

v1, v2, v3 are arbitrary. In order to have equality of the three-point Wightman functions in
the two theories from the S O(1, 1) invariance, the existence of transformations Λ ∈ S O(1, 1)
connecting the points (0, ξ3

1) and (0, ξ3
2) with an open vicinity of Jost points is necessary. It

would be possible, if there existed two-dimensional vectors ξ̃1 and ξ̃2, (ξ̃i = Λ(0, ξ3
i )), satisfying

the inequalities:

(ξ̃1)
2

< 0, (ξ̃2)
2

< 0, |(ξ̃1, ξ̃2)| <

√

(ξ̃1)
2
(ξ̃2)

2
.

These inequalities are similar to the corresponding inequalities in the commutative case (see
equation (4.87) in [1]). However, it is easy to check up, that the latter from these inequalities
can not be fulfilled when the first two are fulfilled.

Let us show now that the condition (17) actually is a consequence of a condition (16).
Statement Condition (17) is fulfilled, if the vacuum vectors Ψi

0 are unique, normalized,
translationally invariant vectors with respect to translations Ui (a) along the axis x3.

It is easy to see that the operator U−1
1 (a)V −1 U2 (a)V commutes with operators ϕ1 (t, ~x)

and, owing to the irreducibility of the set of these operators, it is proportional to the identity
operator. Having considered the limit a = 0, we see that

U−1
1 (a)V −1 U2 (a)V = II. (24)

From the equality (24) it follows directly that if

U1 (a)Ψ1
0 = Ψ1

0, (25)

then
U2 (a)V Ψ1

0 = V Ψ1
0, (26)

i.e. the condition (17) is fulfilled. If the theory is translationally invariant in all variables, the
equality (26) is true, if the vacuum vector is unique, normalized, translationally invariant in the
spatial coordinates.

The most important consequence of the generalized Haag theorem is the following statement:
if one of the two fields related by conditions (16) and (17) is a free field, the other is also free.
In deriving this result the equality of the two-point Wightman functions in the two theories and
LCC are used. In [24] it is proven that this result is valid also in the noncommutative theory,
if θ0i = 0.

We show below that from the equality of the four-point Wightman functions for the fields
ϕ1 (x) and ϕ2 (x), related by the conditions (16) and (17), which takes place in the commutative
theory, an essential physical consequence follows. Namely, for such fields the elastic scattering
amplitudes of the corresponding theories coincide, hence, due to the optical theorem, the total
cross-sections coincide as well. In particular, if one of these fields, for example, ϕ1 (x) is a
trivial field, i.e. its corresponding S matrix is equal to unit, also the field ϕ2 (x) is trivial.
In the derivation of this result the local commutativity condition is not used. The statement
follows directly from the Lehmann-Symanzik-Zimmermann reduction formulas [30].
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Let < p3, p4|p1, p2 >i, i = 1, 2 be an elastic scattering amplitudes for the fields ϕ1 (x) and
ϕ2 (x) respectively. Owing to the reduction formulas,

< p3, p4|p1, p2 >i∼

∫

d x1 · · · d x4 ei (−p1 x1−p2 x2+p3 x3+p4 x4) ·

4
∏

j=1

(�j + m2) < 0|T ϕi (x1) · · · ϕi (x4)|0 >, (27)

where T ϕi (x1) · · · ϕi (x4) is the chronological product of operators. From the equality

W2 (x1, . . . , x4) = W1 (x1, . . . , x4)

it follows that
< p3, p4|p1, p2 >1=< p3, p4|p1, p2 >2 (28)

at any pi. Having applied this equality for the forward elastic scattering amplitudes, we obtain
that, according to the optical theorem, the total cross-sections for the fields ϕ1 (x) and ϕ2 (x)
coincide. If now the S-matrix for the field ϕ1 (x) is unity, then it is also unity for the field
ϕ2 (x). We stress that the conclusions following from the equality of the four-point Wightman
functions in the two theories are valid in the commutative field theory.

Let us proceed now to the S O(1, 1) symmetric theory. In this case, using the equality of the
two-point Wightman functions in the two theories, we come to the conclusion that if LCC is
fulfilled (15) and the current in one of the theories is equal to zero, for example, j1(x) = 0, then
j2(x) = 0 as well. Recall that ji(x) = (� + m2)ϕi(x). Indeed as W1 (x1, x2) = W2 (x1, x2),

< 0|j1 (x1)j1 (x2)|0 >=< 0|j2 (x1)j2 (x2)|0 >= 0, ∀ x1, x2, (29)

since j1 (x) = 0. Hence,
j2 (x)|0 >= 0.

In order to prove that the latter condition implies that j2 (x) = 0 we can use arguments similar
with the ones in the standard case [22].

Let us point out that in the proof the spectral conditions and translational invariance only
with respect to the commutating coordinates were used. If the theory is translationally invariant
with respect to all variables and the standard spectral condition is fulfilled then if ϕ1 (x) is a
free field, ϕ2 (x) is a free field as well [24].

4 Conclusions

It has been shown that in two S O(1, 1) invariant theories, whose field operators are connected
by a unitary transformation at equal times, the two-point Wightman functions coincide. This
leads to the conclusion that if one of the theories is a trivial one, then the other is trivial as
well. In the derivation of this statement the assumptions of spectrality, local commutativity
and translation invariance were used, which are weaker than standard.

In case two S O(1, 3) invariant theory are connected by the same condition new consequences
of Haag’s theorem have been obtained. It is proven that the equality of four-point Wightman
functions, which is fulfilled only in S O(1, 3) invariant theory, leads to the equality of elastic
scattering amplitudes and total cross-sections in the two theories.

Acknowledgements Yu.V. is supported by the grant of the President of the Russian
Federation NS-7293.2006.2 (government contract 02.445.11.7370).
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