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Abstract

New static regular axially symmetric solutions of SU(2) Euclidean Yang-Mills theory are
constructed numerically. They represent calorons having non-trivial Polyakov loop at spacial
infinity. The solutions are labeled by two integers m, n. It is shown that besides known,
charge one self-dual periodic instanton solution, there are other non-self dual solutions of
the Yang-Mills equations naturally composed out of pseudoparticle constituents.

1 Introduction

The interplay between properties of self-dual BPS monopole solutions [1] and instantons [2, 3]
caused a lot of attraction over last decade. It was shown that exact caloron solutions, i.e. the
periodic instantons at finite temperature on R

3×S1, for which component A0 approaches a con-
stant at spacial infinity [5, 7], A0 → 2πiω = 2πiωaσa, are composed out of Bogomol’nyi-Prasad-
Sommerfeld (BPS) monopole constituents [8]. This periodic array of instantons corresponds to
the non-trivial Polyakov loop (holonomy) around S1 at spacial infinity. In the periodic gauge
Aµ(r, x0 + T ) = Aµ(r, x0) the Polyakov loop operator is defined as

P(r) = Tr lim
r→∞

P exp




T∫

0

A0(r, x0)dx0


 , (1)

where T is the period in the imaginary time direction, which is related with finite temperature
Θ as T = 1/kΘ, and P denotes the path ordering. Non-trivial value of P acts like a Higgs
field in adjoint representation labeling the vacua, because under a gauge transformation U(r)
it transforms as

P(r) → U(r)P(r)U−1(r) (2)

Alternatively, one can formulate the model in R
4 by fixing periodicity modulo gauge transfor-

mations. Indeed, the temporal component A0 = 2πiωaσa can be gauged away by non-periodic
gauge transformation U(r, x0) = exp{2πix0ω

aσa} and then

Aµ(r, x0 + T ) = e2πiωaσa

Aµ(r, x0)e
−2πiωaσa

(3)

For the self-dual caloron solutions, considered in [8] (so called KvBLL calorons), the field
strength vanishes at spatial infinity, or, equally, it is a pure gauge there, and the constituents are
just BPS monopole-antimonopole pairs. The property of self-duality allows us to apply very
powerful formalism of ADHM-Nahm construction [4] to obtain different exact multi-caloron
configurations [8] and analyse properties of the BPS monopole constituents. In particular,
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it was shown that as the size of charge one SU(2) caloron is getting larger than the period
T , the caloron is splitting into constituents which represent the monopole-antimonopole pair
configuration. The properties of these saddle point solutions in related SU(2) Yang-Mills-Higgs
(YMH) model were discussed first by Taubes [11], and different monopole-antimonopole systems
were constructed numerically in [12, 13, 14], both in BPS limit and beyond.

However, besides the self-dual instantons, also solutions to the second order order Euler-
Lagrange equations of the euclidean Yang-Mills (YM) theory are known [9]. Also recently
the non-self dual instanton-anti-instanton pair static configuration was constructed [10], which
represent a saddle point configurations, the deformation of the topologically trivial sector.

For the non-self dual instantons the action is finite but the field strength behaves different at
spacial infinity and the action is not proportional to the Chern-Pontryagin topological charge.

In the present work we study the static axially symmetric SU(2) YM caloron solutions on
R3 × S1 with non-trivial holonomy and find regular numerical solutions which are labeled by
two integers (n,m as their counterparts in the YMH system, the monopole-antimonopole chains
and the circular vortices [14]. Similar to the case of axially symmetric instantons discussed in
[10], only m = 1 solutions are self dual, the calorons labeled by m ≥ 2 however are non-self
dual. The latter configurations are composed of constituents and corresponds to the monopole-
antimonopole chains and/or vortex-like solutions.

In section II we present the action of the euclidean YM theory, the axially symmetric ansatz
and the boundary conditions imposed to get regular solution. We will make a detailed numerical
study of the solutions of the corresponding second order field equations. In section III we discuss
the properties of the caloron solutions, in particular the dependence on the temperature.

2 Euclidean SU(2) action and axially symmetric ansatz

We consider the usual SU(2) YM action

S =
1

2

∫
d4xTr (FµνFµν) =

1

4

∫
d4x

(
Fµν ± F̃µν

)2
∓

1

2

∫
d4xTr

(
Fµν F̃µν

)
(4)

in Euclidean space R3 ×S1 with one periodic dimension x0 ∈ [0, T ] and in normalization where
the gauge coupling e2 = 1. Here su(2) gauge potential is Aµ = Aa

µτa/2 and the field strength
tensor is Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. The topological charge is defined as

Q =
1

32π2
εµνρσ

∫
d4xTrFµνFρσ (5)

and for the self-dual configurations S = 8π2Q.
To construct new regular caloron solutions of the corresponding second order field equations

and investigate dependence of these solutions on the boudary conditions, we employ the known
axially symmetric Ansatz for the gauge field

Aµdxµ =

(
K1

r
dr + (1 − K2)dθ

)
τ

(n)
ϕ

2e
− n sin θ

(
K3

τ
(n,m)
r

2e
+ (1 − K4)

τ
(n,m)
θ

2e

)
dϕ;

A0 = Aa
0

τa

2
=

(
K5

τ
(n,m)
r

2
+ K6

τ
(n,m)
θ

2

)
,

which was previously applied to the Yang-Mills-Higgs system [14]. The Ansatz is written in

the basis of su(2) matrices τ
(n,m)
r , τ

(n,m)
θ and τ

(n)
ϕ which are defined as the dot product of the

Cartesian vector of Pauli matrices ~τ and the spacial unit vectors

ê(n,m)
r = (sin(mθ) cos(nϕ), sin(mθ) sin(nϕ), cos(mθ)) ,

ê
(n,m)
θ = (cos(mθ) cos(nϕ), cos(mθ) sin(nϕ),− sin(mθ)) ,

ê(n)
ϕ = (− sin(nϕ), cos(nϕ), 0) , (6)
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respectively. The gauge field functions Ki, i = 1, . . . , 6 depend on the coordinates r and θ.
Recall that although the ansatz (6) is static, there is a time dependent gauge transformation

which can eliminate the temporal component A0, then the fields Ak will have a periodic time
dependence modulo gauge transformation.

Substitution of the axially symmetric ansatz (6) into definition of the topological charge Q
yields similar to [14, 10]

Q =
n

2
[1 − (−1)m] ,

that is the configurations labeled by an even integer m correspond to the topologically trivial
sector and represent saddle point solutions.

The number of the structure functions of the ansatz (6) evidently exceeds what one need to
solve first order self-duality equations, in components there are only 3 equations on 6 functions
and the system is overdetermined. Thus, a self-dual configuration corresponds to reduction of
the ansatz (6). Actually the Harrington-Shepard solution [5] as well as KvBLL calorons [8] were
constructed on the Corrigan-Fairlie-’t Hooft, or Jackiw-Nohl-Rebbi ansatz [6] Aµ = iη̄µν∂ν lnφ
and its generalizations.

To satisfy the condition of finitness of the total Euclidean action (4) we require that the field
strength vanishes at the spatial boundary as Tr(FµνFµν) → O(r−4) as r → ∞. In the regular
gauge the value of the component of the gauge potential A0 at spatial infinity approaches a
constant, i.e.,

A0 →
iβ

2
τ (n,m)
r (7)

This corresponds to the holonomy operator (1)

TrP(r) = Tr exp

(
iβT

2
τ (n,m)
r

)
= Tr U exp

(
iβT

2
τz

)
U−1 = cos

βT

2
, (8)

where U ∈ SU(2) and β ∈ [0; 2π/T ]. Using the classical scale invariance we can fix β = 1.
Let us consider deformations of the topologically trivial sector and the Harrington-Shepard

caloron solution with trivial holonomy. Then the boundary conditions at infinity are

for even m = 2k : A0 −→ βê(n,m)
r = βUτzU

† , Ak −→ i∂kUU † ,

for odd m = 2k + 1 : A0 −→ βê(n,m)
r , Aµ −→ UA(n,1)

µ∞ U † + i∂µUU † ,

where U = exp{−ikθτ
(n)
ϕ } and A

(n,1)
µ∞ is the self-dual charge n generalized Harrington-Shepard

caloron solution [5]. We will not require, however, that the gauge field has to be self-dual, i.e.,
Fµν 6= ±F̃µν , in general

In terms of the profile functions of the ansatz (6) these boundary conditions read:

K1 −→ 0 , K2 −→ 1 − m , K3 −→
cos θ − cos(mθ)

sin θ
(for odd m) ,

K3 −→
1 − cos(mθ)

sin θ
(for even m) , K4 −→ 1 −

sin(mθ)

sin θ
, K5 −→ 1 , K6 −→ 0 .

Regularity at the origin requires

K1(0, θ) = 0 , K2(0, θ) = 1 , K3(0, θ) = 0 , K4(0, θ) = 1 ,

sin(mθ)K5(0, θ) + cos(mθ)K6(0, θ) = 0 ∂r [cos(mθ)K5(r, θ) − sin(mθ)K6(r, θ)]|r=0 = 0.

Regularity on the z-axis, finally, requires

K1 = K3 = K6 = 0 , ∂θK2 = ∂θK4 = ∂θK5 = 0 ,

3



3 Numerical results

The regular caloron solutions with finite action density and proper asymptotic behavior can
be constructed numerically by imposing these boundary conditions and solving the resulting
system of 6 coupled non-linear partial differential equation of second order. As usually, to
obtain regular solutions we have to fix the gauge condition as ∂rAr + ∂θAθ = 0 (reduced
Lorentz gauge), or r∂rK1 − ∂θK2 = 0 [14, 15] and introduce the compact radial coordinate
x = r/(1 + r) ∈ [0 : 1].The numerical calculations were performed with the software package
FIDISOL based on the Newton-Raphson iterative procedure [16].

The simplest class of the solutions corresponds to the m = 1. It turns out that, similar
to [10] these solutions are self-dual. we check this by numerical calculation of the integrated
action density and direct substitution of the solutions into the first order self-duality equations.
Furtermore, the m = n = 1 solution is spherically symmetric finite temperature solution [5]
of unit topological charge. The m = 1, n ≥ 2 solutions are axially symmetric and the action
density distribution has a shape of a torus.

The m ≥ 2 configurations satisfy only the second order Yang-Mills field equations and are
not self-dual. Similar to their couterparts in YMH theory [14], the solutions with n = 1,m =
2, 3, 4 . . . represent chains of interpolating instantons and anti-instantons of unit charge. A
general property of these solutions is that the corresponding action density posess m clear
maxima on the axis of symmetry (see Fig 1). Thus, we can distinguis m individual consituents
and identify these with non-self dual chain of periodic instantons. Also, the topological charge
density posesses m local extrema on the z axis, whose locations coinsides with maxima of the
action density. The positive and negative extrema alternate between the locations of individual
constituents.

The same general behavior was observed for all other solutions of different types. Generally,
increasing of the winding number n which is related with topological charge of each individual
constituent pseudoparticle, yelds shift of the local extrema of the action density away from the
symmetry axis. For example, for a configuration with n = m = 3 (triple charged instanton-
anti-instanton-instanton system) we found three maxima on the zρ plane, which corresponds to
the surface of triple torus with one maximum on x, y plane and two other, placed symmetrically
above and below this plane (see Fig 2). The counterparts of these configurations in YMH
theory are monopole-vortex rings systems [14]. Again, the radius of the tori and relative distance
between its location decreases as ∆ρ0 ∼ 1/β. The numerical results indicate that the intergated
action of the m ≥ 2 configurations for all non-zero values of temperature remains above the
self-duality bound. Since the counterpats of these solutions in YMH theory corresponds to the
sphaleron-like solutions, there is a reason to belive that such caloron solutions also are unstable
and corresponds to the saddle points of the action functional. Note that the variation of the
temperature does not lead to the chain-vortex bifurcations, which were observed in the YNH
systems in external electromagnetic field [17] or in the limit of large scalar self-coupling [18].

4 Conclusions

To summarise, we have constructed axially symmetric caloron solutions of the d=4 Euclidean
SU(2) YM theory by numerical solution of the second order Yang-Mills equations. Similar
to the monopole-antimonopole axially symmetric solutions of the YMH theory, the calorons
are labelled by two winding numbers (n,m) and the topological charge of the configuration is
Q = n

2 [1 − (−1)m]. The action density of the configuration has non-trivial shape and local
maxima of the action functional allows us to identify location of each individual constitutent.
Besides configurations with m = 1, which are selfdual, the solutions do not saturate the self-
duality bound.

For the chain solutions with n = 1, 2 there are instantons and anti-instantons, which are
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m=2, n=1 caloron: action density at β=1.0
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n=3,m=1 caloron: Action density at β = 1.5
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n=4, m=1 caloron: Action density at β=1
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Figure 1: The action densities of the m = 2, 3, 4 and n = 1 instanton–anti-instanton chains are
shown in coordinates z, ρ.

m=2, n=3 caloron: action density at β=1.0
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n=3,m=3 caloron: Action density at β = 1.5
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Figure 2: The action density distribution is plotted for the n = 2 and n = 3 calorons with
winding number m = 3, respectively.
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located on the axis of symmetry in alternating order. For configurations of higher topological
charge the action density forms a torus-like shape.

The caloron solutions described here are restricted because the Ansatz (6) possesses the
reflection Z2-symmetry with respect to the xy plane. This is not the symmetry of the KvBLL
solution which has only the O(2) symmetry with respect to the rotation about the axis of
symmetry [8]. To describe general non-self dual axially symmetric caloron solutions, also with
non-trivial holonomy, one has to implement an extended Ansatz for the gauge field which
includes complete set of 12 profile functions. and consider different set of boundary conditions.
The results of the related calculations will be reported elsewhere.

Although both the configurations considered above as well as KvBLL calorons admit the
constituent interpretation with lumps being accociated with monopoles, there is an important
difference. The former caloron solutions, in a general case are defined along the same positive
simple root, which corresponds to a given SU(2) subgroup of SU(N). For example, the con-
figuration with winding numbers n = 1,m = 2 corresponds to the monopole-antimonopole pair
solution described in [13, 14]. The monopole constituents of the SU(N) KvBLL calorons [8] are
defined in a different way, e.g., the SU(2) caloron configuration describes monopole of positive
charge embedded along positive simple root with the asymptotic A0 → β, and a Weyl-reflected
antimonopole with asymptotic A0 → 2π/T − β.

It would be interesting to see how the non-self-dual calorons presented here can be relevant
for QCD, in particular how the corresponding saddle point configurations may contribute to
the process of the confinement-deconfinement phase transition.
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[12] Bernhard Rüber, Diploma Thesis, University of Bonn 1985.

[13] B. Kleihaus, and J. Kunz, Phys. Rev. D61 (2000) 025003.

[14] B. Kleihaus, J. Kunz, and Ya. Shnir, Phys. Lett. B570, (2003) 237;
B. Kleihaus, J. Kunz, and Ya. Shnir, Phys. Rev. D68 (2003) 101701;
B. Kleihaus, J. Kunz, and Ya. Shnir, Phys. Rev. D70 (2004) 065010.

[15] B. Kleihaus, J. Kunz, and D. H. Tchrakian, Mod. Phys. Lett. A13 (1998) 2523.

[16] W. Schönauer, and R. Weiß, J. Comput. Appl. Math. 27 (1989) 279;
M. Schauder, R. Weiß, and W. Schönauer, The CADSOL Program Package, Universität
Karlsruhe, Interner Bericht Nr. 46/92 (1992).

[17] Ya. Shnir, Phys. Rev. D 72 (2005) 055016.

[18] J. Kunz, U. Neeman and Ya. Shnir, Phys. Lett. B640, (2006) 57.

7


