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Abstract

We study the quantum aspects of a charged hypermultiplet in deformed N = (1, 1)
superspace with singlet non-anticommutative deformation of supersymmetry. We prove the
renormalizability of this model and compute the leading contributions to the low-energy
effective action. In particular, the holomorphic part of the effective action is shown to be a
star-generalization of the standard holomorphic potential, while the antiholomorphic part is
not. The component structure of these contributions to the effective action is also discussed.

1 Introduction

The interest in N = (1/2, 0) non-anticommutative deformations of supersymmetry originated
with the papers [1], where these deformations were derived from superstring theory on a con-
stant graviphoton background. As a rule, such deformations break supersymmetry only in
the chiral sector of superspace, which is possible in Euclidean superspace. The key feature of
non-anticommutative deformations on the quantum level is the preservation of renormalizabil-
ity, which was established for N = (1/2, 0) Wess-Zumino [2] and super Yang-Mills (SYM) [3]
models. This result is very non-trivial since the non-anticommutative deformations involve a
parameter with negative mass dimension which plays the role of a new coupling constant. Since
such theories appear to be renormalizable, their quantum dynamics should be explored. Indeed,
the low-energy effective action of such models was considered in [4], where the corrections due
to the non-anticommutative deformation were calculated. These results provide a promising
new method of partial supersymmetry breaking which preserves renormalizability.

These surprises of N = (1/2, 0) theories motivated analogous investigations of deformed ex-

tended supersymmetric theories. There are several types of non-anticommutative deformations
of the extended supersymmetry. The simplest one depends on a single scalar parameter I which
appears in the anticommutator of the chiral N = (1, 1) Grassmann coordinates,

{θα
i , θβ

j }? = 2Iεαβεij . (1)

Such a deformation was introduced in [5] and was named a chiral singlet deformation; the
corresponding field theories are referred to as N = (1, 0) non-anticommutative. Although more
general types of deformations of extended supersymmetry have been considered in [6, 7], here
we shall restrict ourselves to the singlet deformation (1), since this case is most elaborated now
on the classical level [8]-[11] and its stringy origins have been established [8].

The quantum aspects of N = (1, 0) non-anticommutative theories are more involved. In
[8, 9, 10] it was shown that the N = (1, 0) SYM and hypermultiplet models acquire a number
of new classical interaction terms even in the Abelian case. In principle, such terms can spoil
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renormalizability. In our recent paper [12] we addressed this problem in two such N = (1, 0)
theories, namely the Abelian SYM model and the neutral hypermultiplet interacting with an
Abelian gauge superfield. By computing all divergent contributions to the effective action we
proved that both these models remain renormalizable. Note that these theories are deformations
of free ones, and thus all interaction terms vanish in the undeformed limit I → 0. A physically
more important example is the charged hypermultiplet model, which – already prior to the
deformation – features the interaction of a hypermultiplet with a background Abelian vector
superfield. In particular, the low-energy effective action of this theory is goverend by the so-
called holomorphic potential, which plays a significant role in the Seiberg-Witten theory [13].
Therefore, in the present work we study the low-energy effective action and renormalizability
for the N = (1, 0) non-anticommutative charged hypermultiplet model.

Theories with extended supersymmetry are most naturally described within the harmonic
superspace approach [14, 15]. Hence, we will consider the N = (1, 0) non-anticommutative
charged hypermultiplet in the harmonic superspace that was studied on the classical level in
[9, 10]. We are interested in the non-anticommutative deformation of the holomorphic effective
action that was discussed in [16] using the harmonic superspace approach. Here we generalize
the results of these works to the non-anticommutatively deformed hypermultiplet theory and
compute the leading contributions to the effective action.

One of our main results is the proof of one-loop renormalizability of the deformed charged hy-
permultiplet system. It supports the idea that the non-anticommutative deformations in general
do not spoil the renormalizability of supersymmetric theories. Next, we find the leading con-
tributions to the (anti)holomorphic effective action including non-anticommutative corrections.
We observe that the holomorphic and antiholomorphic pieces are deformed differently: the holo-
morphic piece is nothing but the star-generalization of the standard holomorphic potential while
the antiholomorphic piece is not. We study also the component structure of the deformed effec-
tive action and derive the corrections to the standard terms in the (anti)holomorphic potential
for the bosonic component fields.

The present contribution is based essentially on our recently published results [17].

2 Non-anticommutative charged hypermultiplet model

In the undeformed case the classical action of the charged hypermultiplet interacting with the
external Abelian vector superfield is given by

S =

∫

dζdu q̆+(D++ + V ++)q+. (2)

Here q+ and its conjugate q̆+ are complex analytic superfields which describe the hypermulti-
plet, while V ++ is a real analytic superfield which corresponds to the vector multiplet. The
integration in (2) is performed over N = 2 analytic superspace with the measure dζdu. In the
present work we consider the non-anticommutative generalization of this model in the case of
chiral singlet deformation of N = (1, 1) supersymmetry. Such a deformation was introduced
in [5] and the corresponding field models were studied in [8]-[12]. It is effectively taken into
account by the star product operator

? = exp
[

−Iεαβεij
←−
Q i

α

−→
Q j

β

]

, (3)

which should be placed everywhere instead of usual product of superfields in the classical actions.
The constant I here is a parameter of non-anticommutativity, Qi

α are the supercharges. In
particular, the non-anticommutative generalization of the action (2) is given by [9]

S =

∫

dζdu q̆+ ?∇++ ? q+, (4)
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where we use the notations

∇++ = D++ + V ++, ∇−− = D−− + V −−. (5)

This action (4) is invariant under the following gauge transformations

δq̆+ = −q̆+ ? λ, δq+ = λ ? q+, δV ++ = −D++λ− [V ++, λ]?. (6)

In the deformed case the strength superfields W , W̄ are defined by the standard equations

W̄ = −
1

4
D+αD+

α V −−, W = −
1

4
D̄+

α̇ D̄+α̇V −−. (7)

However, the superfield V −− is now given by a series

V −−(z, u) =
∞
∑

n=1

(−1)n

∫

du1 . . . dun
V ++(z, u1) ? V ++(z, u2) ? . . . ? V ++(z, un)

(u+u+
1 )(u+

1 u+
2 ) . . . (u+

n u+)
, (8)

which solves the star-deformed zero-curvature equation [8]

D++V −− −D−−V ++ + [V ++, V −−]? = 0. (9)

Let us introduce the “bridge” superfield Ω(z, u) as a general N = (1, 1) superfield which
relates the covariant harmonic derivatives ∇±± with the plain ones D±±:

∇++ = eΩ
? ? D++e−Ω

? , ∇−− = eΩ
? ? D−−e−Ω

? . (10)

The bridge superfield was originally introduced in [14] for the undeformed N = 2 SYM theory
as an operator relating the N = 2 superfields in the τ - and λ-frames. Using the bridge superfield
Ω one can alternatively rewrite the equation (8) in the following two equivalent forms

V −−(z, u) =

∫

du′
e
Ω(z,u)
? ? e

−Ω(z,u′)
? ? V ++(z, u′)

(u+u′+)2
=

∫

du′
V ++(z, u′) ? e

Ω(z,u′)
? ? e

−Ω(z,u)
?

(u+u′+)2
. (11)

The expression (11) can be checked directly to satisfy the zero-curvature condition (9).
It is well known [15] that the free propagator in the hypermultiplet model (2) is given by

the following expression 1

G
(1,1)
0 (1|2) = −

1

�
(D+

1 )4(D+
2 )4

δ12(z1 − z2)

(u+
1 u+

2 )3
(12)

which solves the equation D++G
(1,1)
0 (1|2) = δ

(3,1)
A (1|2), where δ

(3,1)
A (1|2) is the analytic delta-

function. Let us define now the full propagator in the model (4) as a distribution satisfying the
equation

∇++ ? G(1,1)(1|2) = δ
(3,1)
A (1|2). (13)

The solution of (13) can formally be written as

G(1,1)(1|2) = −
1

�̂?

? (D+
1 )4(D+

2 )4
{

e
Ω(1)
? ? e

−Ω(2)
? ?

δ12(z1 − z2)

(u+
1 u+

2 )3

}

, (14)

where �̂? is a covariant box operator

�̂? = −
1

2
(D+)4∇−− ?∇−−. (15)

1Note that we write here (and further) the box operator � assuming that it is nothing but the Laplacian
operator rather than a d’Alambertian one since we deal with the Euclidian space.
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Clearly, it moves an analytic superfield to another analytic one. The operator (15), acting on
the analytic superfield, can be represented in the form

�̂? = ∇m ?∇m −
1

2
(∇+α ? W ) ?∇−

α −
1

2
(∇̄+

α̇ ? W̄ ) ? ∇̄−α̇ +
1

4
(∇+α ?∇+

α ? W ) ?∇−−

−
1

8
[∇+α,∇−

α ]? ? W −
1

2
{W, W̄ }?. (16)

Here ∇±
α = D±

α +V ±
α , ∇̄±

α̇ = D̄±

α̇ + V̄ ±

α̇ are covariant spinor derivatives. Note that the expression
(16) has a similar form as in the undeformed theory [18] with the simple star-modification of
multiplication of superfields. This result is not surprising since eq. (16) is derived from (15)
only by using the (anti)commutation relations between spinor derivatives which have the same
form as in the undeformed theory.

3 Computation of low-energy effective action

In general, the effective action in the hypermultiplet model (4) is a functional of external
strength superfields W , W̄ and, possibly, the prepotential V ++. The part of the effective action
which depends only on the superfields without spatial and covariant spinor derivatives can be
written as

Γ =

∫

d4xd4θF?(W ) +

∫

d4xd8θH?(V
++, V −−,W, W̄ ), (17)

where F? and H? are some functions. Note that the antiholomorphic piece is prohibited in
the non-anticommutative case. Indeed, the strength superfields W , W̄ are not (anti)chiral, but
covariantly (anti)chiral

D+
α W̄ = ∇−

α ? W̄ = 0, D̄+
α̇ W = ∇̄−

α̇ ? W = 0. (18)

Therefore the expression
∫

d4xd4θ̄F̄?(W̄ ) depends on θ variables

D−

α

∫

d4xd4θ̄ F̄?(W̄ ) =

∫

d4xd4θ̄ [F̄?(W̄ ), V −

α ]? 6= 0. (19)

The rhs of (19) does not vanish since the star-product is not cyclic under d4xd4θ̄ integration.
Therefore, the possible terms in the low-energy effective action which correspond to the anti-
holomorphic potential in the limit I → 0 is included into the function H?(V

++, V −−,W, W̄ )
integrated in full superspace. The direct computations will specify these functions F? and H?.

For the further considerations it will be more convenient to study the variation of effective
action δΓ rather then Γ itself. In particular, given the holomorphic part of the action (17)

Γhol =

∫

d4xd4θF?(W ), (20)

using the same steps as in the undeformed non-Abelian N = 2 supergauge theory [19], one can
write its variation in the full superspace

δΓhol =

∫

d12zdu δV ++ ? V −− ?
1

W
? F ′

?(W ). (21)

The one-loop effective action in the model (4) is defined by the following formal expression
2

Γ = Tr ln
δ2S

δq̆+(1)δq+(2)
= Tr ln(∇++?) = −Tr ln G(1,1)(1|2), (22)

2Note that the one-loop effective action in the Euclidean space is given by Γ = Tr ln S
(2)

φφ̄
rather then the

Minkowski space expression Γ = iTr ln S
(2)

φφ̄
. Here S

(2)

φφ̄
is the second mixed functional derivative of a classical

action S[φ, φ̄].
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where G(1,1)(1|2) is given by eq. (14). It is easy to find the variation of (22)

δΓ = Tr[δV ++ ? G(1,1)] =

∫

dζdu δV ++(1) ? G(1,1)(1|2)|(1)=(2) . (23)

There is an important relation between full and free hypermultiplet propagators

G(1,1)(1|3) = G
(1,1)
0 (1|3) −

∫

dζ2du2 G
(1,1)
0 (1|2) ? V ++(2) ? G(1,1)(2|3) (24)

which can be checked directly to satisfy (13). Substituting (24) into (23), we find

δΓ = −

∫

dζ1du1dζ2du2 δV ++(1) ? G
(1,1)
0 (1|2) ? V ++(2) ? G(1,1)(2|1). (25)

Taking into account the exact form of the propagators (12,14), we rewrite eq. (25) as follows

δΓ = −

∫

d12z1d
12z2du1du2 δV ++(1) ?

1

�

δ12(z1 − z2)

(u+
1 u+

2 )3

×V ++(2) ?
1

�̂?(2)

? (D+
1 )4(D+

2 )4
{

e
Ω(2)
? ? e

−Ω(1)
? ?

δ12(z2 − z1)

(u+
2 u+

1 )3

}

. (26)

The equation (26) is a starting point for further calculations of different contributions to the
effective action.

3.1 Divergent part of effective action

To derive the divergent part of the effective action it is sufficient to consider the approximation

1

�̂?

≈
1

�
(27)

since all other terms in the operator �̂? result to higher powers of momenta in the denominator.
Upon the condition (27), the variation of effective action (26) simplifies essentially

δΓdiv =

∫

d12z1d
12z2

du1du2

(u+
1 u+

2 )6
δV ++(1) ?

1

�
δ12(z1 − z2)

×V ++(2) ?
1

�
(D+

1 )4(D+
2 )4

{

e
Ω(2)
? ? e

−Ω(1)
? ? δ12(z2 − z1)

}

. (28)

We have to apply the identity

δ8(θ1 − θ2)(D
+
1 )4(D+

2 )4δ12(z1 − z2) = (u+
1 u+

2 )4δ12(z1 − z2) (29)

to shrink the integration over the Grassmann variables to a point. Note that all the derivatives
D+ in eq. (28) must hit the delta function, otherwise the result is zero since there are exactly
eight such derivatives to apply (29). Moreover, the presence of star-product can not modify the
relation (29). Calculating the divergent momentum integral and applying the equation (29),
the integration over d12z2 in (28) can be performed resulting to

δΓdiv =
1

16π2ε

∫

d12zdu1 δV ++(z, u1) ?

∫

du2
V ++(z, u2) ? e

Ω(z,u2)
? ? e

−Ω(z,u1)
?

(u+
1 u+

2 )2
. (30)

Using the relation (11) we obtain finally

δΓdiv =
1

16π2ε

∫

d12zdu δV ++ ? V −−. (31)
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The variation (31) can be easily integrated with the help of eq. (21)

Γdiv =
1

32π2ε

∫

d4xd4θ W 2. (32)

We see that the divergent part of effective action is proportional to the classical action in
N = (1, 0) SYM model. In this sense the non-anticommutative charged hypermultiplet model
(4) is renormalizable.

3.2 Finite part of the effective action

Now we will derive the finite part of the effective action of deformed hypermultiplet model. We
start with the expression (26) applying the following approximation

1

�̂?

≈
1

�− 1
2{W, W̄ }?

. (33)

This means that we neglect all spatial and spinor covariant derivatives of strength superfields
in the decomposition (16)

∂mW = ∂mW̄ = 0, ∇+α ? W = 0, ∇̄+
α̇ ? W̄ = 0. (34)

Exactly such an approximation (34) is sufficient for deriving the (anti)holomorphic contribu-
tions. Therefore the effective action (26) can be rewritten as follows

δΓ =

∫

d12z1d
12z2

du1du2

(u+
1 u+

2 )6
δV ++(1) ?

1

�
δ12(z1 − z2)

×V ++(2) ?
1

�− 1
2{W, W̄}?

(D+
1 )4(D+

2 )4
{

e
Ω(2)
? ? e

−Ω(1)
? ? δ12(z2 − z1)

}

. (35)

Once again, all the derivatives D+ in the second line of (35) must hit the delta-function.
Applying the identity (29) the integration over d8θ2 is performed

δΓ =

∫

d12z1d
4x2

du1du2

(u+
1 u+

2 )2
δV ++(x1, θ, u1) ? V ++(x2, θ, u2) ? e

Ω(2)
? ? e

−Ω(1)
?

?
1

�
δ4(x1 − x2)

1

�− 1
2{W, W̄ }?

δ4(x2 − x1). (36)

In the momentum space the second line of (36) reads

∫

d4k

(2π)4
1

k2

1

k2 + 1
2{W, W̄}?

= −
1

16π2
ln?

[

{W, W̄ }?
2Λ2

]

+ (divergent term), (37)

where Λ is an arbitrary constant of dimension +1. Note that the integral (37) has the logarithmic
divergence. We consider here only its finite part since the divergent contribution have been
calculated above. As a result, the finite part of (36) is given by

δΓ = −
1

16π2

∫

d12zdu1 δV ++(x, θ, u1) ?

∫

du2
V ++(x, θ, u2) ? e

Ω(x,θ,u2)
? ? e

−Ω(x,θ,u1)
?

(u+
1 u+

2 )2

? ln?
{W, W̄ }?

2Λ2
. (38)

Applying the identity (11), we conclude

δΓ = −
1

16π2

∫

d12zdu δV ++ ? V −− ? ln?
{W, W̄ }?

2Λ2
. (39)
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The variation of the effective action (39) is one of the main results of the present work.
It gives us the part of the low-energy effective action depending on the strength superfields
without derivatives.

If the parameter of non-anticommutativity tends to zero, I → 0, the equation (39) reduces
to the holomorphic and antiholomorphic parts of the effective action

δΓ(I=0) = −
1

16π2

∫

d12zdu δV ++V −−

(

ln
W

Λ
+ ln

W̄

Λ

)

. (40)

The variation (40) exactly corresponds to the usual holomorphic potential and its conjugate.

3.3 Holomorphic contribution

Let us single out purely holomorphic part from the expression (39). For this purpose we restrict
the background strength superfield W̄ to be constant

W̄ = W̄ = const, (41)

and the log function in (39) simplifies to

ln?
{W, W̄}?

2Λ2
= ln?

W

Λ
+ ln

W̄

Λ
. (42)

The holomorphic part is now given by

δΓhol = −
1

16π2

∫

d12zdu δV ++ ? V −− ? ln?
W

Λ
. (43)

According to the equation (21), the variation (43) can easily be integrated:

Γhol = −
1

32π2

∫

d4xd4θ W ? W ? ln?
W

Λ
. (44)

As a result, we proved that the holomorphic part of effective action in the hypermultiplet model
is nothing but a star-product generalization of a standard holomorphic potential.

3.4 Antiholomorphic contribution

Similarly, the antiholomorphic part of the effective action can be found from (39) when we
restrict the strength W to be constant

W = W = const. (45)

The antiholomorphic part now reads

δΓantihol =
1

16π2

∫

d12zdu δV ++ ? V −− ? ln?
W̄

Λ
. (46)

In contrast to the variation (43), the expression (46) can not be so easily integrated since there
is no antiholomorphic potential written in the antichiral superspace. However, one can readily
find the (part of) effective equation of motion corresponding to the variation (46)

δΓantihol

δV ++
=

1

16π2
(D̄+)2

[

W̄ ? ln?
W̄

Λ

]

. (47)

The variation (46) will be integrated in the next section only for some particular choice of
background gauge superfields.
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4 Component structure of low-energy effective action

We are interested in the leading component terms of the (anti)holomorphic effective actions (44)
and (46) in the bosonic sector. Here we will follow the works [8, 9], using the same conventions
and notations for the component fields and sigma-matrices.

The scalar and vector fields enter the prepotential V ++ in the Wess-Zumino gauge as follows

V ++
WZ = (θ+)2φ̄ + (θ̄+)φ + (θ+σmθ̄+)Am − 2i(θ̄+)2(θ+θ−)∂mAm − (θ̄+)2(θ−σmnθ+)Fmn. (48)

The prepotential V −− is defined as a solution of zero-curvature equation (9). Unfolding the
star-product in (9), we have

D++V −− −D−−V ++
WZ + 2I[∂α

+V ++
WZ∂−αV −− − ∂α

−V ++
WZ∂+αV −−]

+
I3

2
[∂α

−(∂+)2V ++
WZ∂+α(∂−)2V −− − ∂α

+(∂−)2V ++
WZ∂−α(∂+)2V −−] = 0, (49)

where

∂+α =
∂

∂θ+α
, ∂−α =

∂

∂θ−α
. (50)

One can look for the prepotential V −− in the following form

V −− = v−− + θ̄−α̇ v−α̇ + (θ̄−)2A + (θ̄+θ̄−)ϕ−−

+(θ̄+σ̃mnθ̄−)ϕ−−

mn + (θ̄−)2θ̄+
α̇ τ−α̇ + (θ̄+)2(θ̄−)2τ−−, (51)

where all fields in the rhs of eq. (51) depend only on θ+
α , θ−α variables. The superfields v−−,

v−α̇, ϕ−−, A, τ−α̇, τ−− should be found from the eq. (49). The iterative procedure of solving
eq. (49) is given in [8]. Following the same steps we find

v−− = (θ−)2
φ̄

1 + 4Iφ̄
, (52)

v−α̇ =
(θ−σm)α̇Am

1 + 4Iφ̄
, (53)

ϕ−− = −
2i(θ−)2∂mAm

1 + 4Iφ̄
, (54)

A = φ +
4IAmAm

1 + 4Iφ̄
+ (θ+σmnθ−)Fmn, (55)

τ−α̇ =
4I(θ−σmn)αFmnσrα

α̇Ar

1 + 4Iφ̄
, (56)

τ−− =
4I(θ−)2(FmnFmn + FmnF̃mn)

1 + 4Iφ̄
. (57)

Now we obtain the component structure of the strength superfields

W = −
1

4
(D̄+)2V −− = φ +

4IAmAm

1 + 4Iφ̄
+ (θ+σmnθ−)Fmn, (58)

W̄ = −
1

4
(D+)2V −− =

φ̄

1 + 4Iφ̄
+ (θ̄+σ̃mnθ̄−)

Fmn

1 + 4Iφ̄
. (59)

Note that the strength superfields (58) and (59) are deformed differently.
Introducing the notations

Φ = φ +
4IAmAm

1 + 4Iφ̄
, Φ̄ =

φ̄

1 + 4Iφ̄
, Fmn =

Fmn

1 + 4Iφ̄
, (60)
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the eqs. (58,59) can be written as follows

W = Φ + (θ+σmnθ−)Fmn, W̄ = Φ̄ + (θ̄+σ̃mnθ̄−)Fmn. (61)

To find the component structure of the holomorphic potential we substitute the superfields
(61) into (44) and compute all star-products. The result is given by

Γhol = −
1

32π2

∫

d4x(F 2 + F F̃ )

[

ln
Φ

Λ
+ ∆(X(Φ, Fmn))

]

, (62)

where

∆(X) =
1

2
(1−X)2 ln(X − 1) +

1

2
(1 + X)2 ln(1 + X)− (1 + X2) lnX, (63)

X(Φ, Fmn) =
Φ

2I
√

2(F 2 + F F̃ )
. (64)

The equation (62) shows that the function ∆(X) is a correction due to non-anticommutativity
to the standard holomorphic effective action given by the logarithmic term.

Let us consider the antiholomorphic potential when the strength superfield W̄ is defined by
the component expression (59) with the fields Fmn and φ̄ being constant. Inserting this super-
field into the equation (46) we obtain the following component structure of the antiholomorphic
potential

Γantihol = −
1

32π2

∫

d4xd4θ̄ W̄ 2 ln
W̄

Λ
= −

1

32π2

∫

d4x(F2 + FF̃)

(

ln
Φ̄

Λ
+

3

2

)

= −
1

32π2

∫

d4x
(F 2 + F F̃ )

(1 + 4Iφ̄)2

(

ln
φ̄

Λ(1 + 4Iφ̄)
+

3

2

)

. (65)

We see that the non-anticommutativity manifests itself here by a simple rescaling of fields by
the factor 1/(1 + 4Iφ̄). In the limit I → 0 the expression (65) reduces to the standard one for
the antiholomorphic potential.

5 Conclusions

In this paper we studied the low-energy effective action and renormalizability of N = (1, 0)
non-anticommutative charged hypermultiplet theory. This model describes the interaction of
a hypermultiplet with an Abelian vector superfield under the singlet chiral deformation of
supersymmetry. Let us summarize the basic results obtained in the present work.

1. The divergent part of the effective action is calculated and is shown to be proportional
to the classical action of N = (1, 0) non-anticommutative SYM theory. In this sense the
present model is renormalizable.

2. The general structure of the low-energy effective action of this theory is revealed. Away
from the undeformed limit, the antiholomorphic piece no longer exists by itself but is
incorporated in a full N = (1, 1) superspace integral.

3. The holomorphic effective action is calculated and remains a chiral superspace integral.
It is shown to be given by the holomorphic potential which is a star-generalization of
the undeformed one. The contribution to (the variation of) the effective action that
corresponds to the antiholomorphic potential is also found as an expression written in full
N = (1, 1) superspace.
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4. The component structure of the (anti)holomorphic effective action is studied in the bosonic
sector in the constant-fields approximation. It is shown that the holomorphic and anti-
holomorphic potentials still get deformed differently. In this approximation the deformed
holomorphic potential (62) acquires the extra terms given by the function (63). For the
antiholomorphic piece, it is shown that the deformation merely effects a rescaling of com-
ponent fields by a factor of (1 + 4Iφ̄)−1, where φ̄ is one of the two scalar fields of the
vector multiplet.

In the light of the present results, it would be rewarding to solve the following problems
concerning the quantum aspects of non-anticommutative theories with extended supersymme-
try. First, it is tempting to determine for the hypermultiplet model the deformation of the
next-to-leading terms in the effective action, which are necessarily non-holomorphic. Also, one
should develop the non-Abelian generalization. Next, it is important to perform an analogous
investigation for the pure SYM theory, since in the undeformed case this model (the Seiberg-
Witten theory) plays an important role in modern theoretical physics. Finally, it would be
interesting to extend the quantum studies of non-anticommutative theories to the case of non-
singlet (i.e. more general) deformations of supersymmetry, as considered particularly in [6] on
the classical level.
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