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Abstract

The explicit violation of the general covariance on the whole and its minimal violation
to the unimodular covariance specifically is considered. The proper extension of General
Relativity is shown to describe consistently the massive scalar graviton together with the
massless tensor one, as the parts of the metric. The bearing of the scalar graviton to the
dark matter and dark energy is indicated.

1 Motivation

The General Relativity (GR) is the viable theory of gravity, very robust in the underlying
principles. It is known to consistently describe the massless tensor graviton as a part of the
metric field. This is insured by the general covariance (GC) which serves as the gauge symmetry
to eliminate the degrees of freedom contained in the metric in excess of the massless tensor
graviton. Nevertheless, phenomenologically, the application of GR to cosmology encounters
a number of problems, superior of which are those of the dark energy (DE) and the dark
matter (DM). In particular, to solve the latter problem one adjusts usually the conventional
or hypothetical matter particles, remaining still in the realm of GR. The ultimate goal of DM
being in essence to participate only in the gravitational interactions, one can try to attribute
to the aforesaid purpose the additional degrees of freedom contained in the metric, going thus
beyond GC. With this in mind, I discuss in the given report the self-consistent extension of
GR, with the explicit violation of GC to the residual unimodular covariance (UC). In addition
to the massless tensor graviton, such an extension describes the massive scalar graviton as a
part of the metric field. The scalar graviton is proposed as a resource of the gravitational DM,
as well as the scale dependent part of DE.1

2 GC and beyond

Poincare group Let us first discuss the problem of the GC violation from the point of view
of the particle representation in the relativistic quantum mechanics. The free particles are
described by the irreducible finite-dimensional unitary representations of the Poincare group
ISO(1, 3) [2]. The proper representations (m, s) are characterized by the mass m and spin s.
The massless particles, m = 0, possess the isotropic momentum kµ, k · k = 0. The invariance
group of the momentum (the “little” group) proves to be ISO(2), which is noncompact. The
unitary representations of the noncompact groups are known to be infinite-dimensional, but
for the scalar representations. Thus, for a unitary representation of the Poincare group to
be finite-dimensional the noncompact generators of the little group (here the “translations”of
ISO(2)) should act trivially on the representation. It follows thereof that the massless particles
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1The report is partly based on ref. [1], where more details can be found.

1



of the spin s ≥ 1 should be described not by the rays in a Hilbert space but by the respective
equivalence classes. This means that the theory for the spin s ≥ 1 should possess the invariance
relative to transformations within the proper equivalence classes, in other words, be gauge
invariant. Thus, the gauge invariance is not a mere accident but is in fact deeply rooted in the
unitarity requirement for the relativistic quantum theory.

Remind that the spin-one massless particle, say, photon is described by the transverse vec-
tor Âµ(k), k · Â = 0. The gauge transformations required for the triviality of the noncompact
generators, and thus for the unitarity, is Âµ → Âµ + αkµ, with α(k) being a scalar. The
respective gauge group is U(1). Due to this, one is left with the two-component photon pos-
sessing helicities λ = ±1. Likewise, the spin-two massless particle, the graviton, is described by
the transverse-traceless symmetric tensor ĥµν(k), with kµĥµν = 0 and ĥµ

µ = 0 [3]. The gauge
transformations required for the triviality of the ISO(2) translations prove to be

ĥµν → ĥµν + ξµkν + ξνkµ, (1)

with ξµ(k) restricted by k · ξ = 0. The respective three-parameter group corresponds precisely
to UC. Altogether, one arrives at the two-component graviton with the helicities λ = ±2. Thus,
UC is necessary and sufficient for the consistent description of the massless tensor graviton. In
this, the massive scalar graviton can additionally be represented by the independent scalar ĥ(k)
for the time-like momentum kµ, k · k = m2 > 0. The little group of the momentum being the
compact SO(3), the respective gauge transformations are trivial.

One can abandon the reducibility requirement for the representation of the massless tensor
graviton, describing the latter at k · k = 0 by the arbitrary transverse symmetric tensor ĥµν(k),

ĥµ
µ 6= 0. For consistency, this requires the whole gauge group, with arbitary ξµ corresponding

to GC. Under these transformations, the trace changes as ĥµ
µ → ĥµ

µ + 2k · ξ and thus can be
removed, leaving no scalar graviton. It follows thereof that GC, with ξµ unrestricted, though
being commonly used and sufficient to consistently describe the massless tensor graviton, is in
fact redundant.

Field theory Let xµ, µ = 0, . . . , 3, be the arbitrary observer’s coordinates. Let us now
consider the same problem of the GC violation in the framework of the Lorentz-invariant local
field theory of the symmetric tensor hµν(x). The latter is treated as a part of the dynamical
metric field gµν(x). The effective field theory of the metric is to be built of the metric itself
and its first derivatives ∂λgµν (as well as, generally, the higher ones). Otherwise, one can use
the Christoffel connection Γλ

µν(gρσ) which is in the one-to-one correspondence with the first
derivatives of the metric. Now, Γλ

µν is not a tensor and as such can not generally be used as
the Lagrangian field variable. To remedy this introduce the new field variable

Ωλ
µν = Γλ

µν − Γ̃λ
µν , (2)

with the compensating term Γ̃λ
µν being an external nondynamical affine connection. As the

difference of the two connections, Ωλ
µν is the tensor and can thus serve as the Lagrangian

field variable. Generally, Γ̃λ
µν contains forty components. Allowing for the four-parameter

coordinate freedom to bring four components of Γ̃λ
µν to a canonical form, there are still left

thirty six free components. Thus, GC is completely violated. But for the field theory of the
metric to be consistent, at least the three-parameter residual covariance is obligatory. This can
be shown as follows.

Consider the linearized approximation (LA) of the metric theory by putting gµν = ηµν +hµν ,
with hµν being the symmetric tensor field, |hµν | � 1, and ηµν being the Minkowski symbol.
Specify some coordinates xµ = (x0, xm), m = 1, 2, 3, and decompose the symmetric Lorentz-
tensor hµν(x) in terms of the SO(3) fields as hµν = (h00, hm0, hmn). The second, namely,
the three-vector component in the decomposition possesses the wrong norm, violating thus
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unitarity. The unitarity to be preserved, the “dangerous” component should be eliminated.
This requires the three-parameter residual gauge symmetry, at the least. In GR, one invokes
the four-parameter gauge transformations

hµν(x) → hµν(x) + ∂µξν + ∂νξµ (3)

with arbitrary ξµ(x) in accord with GC. Together with the three wrong-norm components hm0,
these transformations eliminate one more right-norm component. In the transverse gauge,
∂µhµν = 0, on the mass shell, ∂ · ∂hµν = 0, accounting for the residual gauge freedom with
the harmonic parameters, ∂ · ∂ξµ = 0, one arrives explicitly at the two-component graviton.
(Here one puts ∂ · ∂ = ∂µ∂µ and similarly for any two vectors in what follows.) This procedure
is quite reminiscent of the electrodynamics where the vector field Aµ(x) = (A0, Am) possesses
one, namely, scalar component with the wrong norm. To eliminate this component the one-
parameter gauge symmetry U(1) is required: Aµ → Aµ + ∂µα, with arbitrary α(x). In the
transverse gauge, ∂ · A = 0, on the mass shell, ∂ · ∂Aµ = 0, with account for the residual
harmonic transformations, ∂ · ∂α = 0, one is left explicitly with the two-component photon.

To allow for some residual covariance one should reduce the number of the free components in
Γ̃λ

µν . To this end, suppose that Γ̃λ
µν is the Christoffel connection for an external nondynamical

metric g̃µν . The latter contains generally ten free components. Allowing for the four-parameter
coordinate freedom there are left six independent nondynamical fields. Thus, the reduction of
the number of the fields is insufficient to leave some residual covariance. The possible caveat
is to confine oneself to the contraction Γ̃λ

µλ. Due to the relation Γ̃λ
µλ = ∂µ

√−g̃, with g̃ being
the determinant of g̃µν , the theory depends in this case just on one nondynamical field. The
respective Lagrangian field variable becomes

Ωµ = Γλ
µλ − Γ̃λ

µλ = ∂µ ln
√

g/g̃ (4)

In this marginal case, the nondynamical metric entering only through g̃, one can consider the
latter just as a scalar density of the proper weight. One can always choose the coordinates so
that g̃ = −1. Under the variation of the coordinates δxµ = −ξµ, the scalar density g̃ varies as
δ
√−g̃ = ∂ · (√−g̃ξ). The residual covariance is that which leaves the canonical value g̃ = −1

invariant, requiring ∂ ·ξ = 0. This is the three-parameter UC. In this case, there is left one more
independent component in the dynamical metric. Precisely this extra component corresponds
to the scalar graviton which can be supplemented to the tensor graviton not violating the
consistency of the theory. Note finally that the dependence on the external nondynamical field
g̃ (more generally, on g̃µν) would tacitly imply that the metric Universe, contrary to what is
assumed in GR, should be not a self-contained system and could not entirely be described in
the internal dynamical terms.

3 Scalar graviton

Lagrangian Let us study the theory of the dynamical metric field gµν and the generic matter
field φm with the generic action

I =

∫

(

Lg(gµν) + ∆Lg(gµν , χ) + Lm(φm, gµν) + ∆Lm(φm, gµν , χ)
)√−g d4x, (5)

where
χ = ln

√

g/g̃. (6)

Here g = det gµν and g̃ is a nondynamical scalar density of the same weight as g. Being the
function of the ratio of the two similar scalar densities, χ itself is the scalar and thus can serve
as the Lagrangian field variable. In the above, Lg and ∆Lg are, respectively, the generally
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covariant and the GC violating contributions of the gravity. Likewise, Lm and ∆Lm are the
matter Lagrangian, respectively, preserving and violating GC. All the Lagrangians above are
assumed to be the scalars.

Conventionally, take as Lg the Λ-grafted Einstein-Hilbert Lagrangian:

Lg = −1

2
M2

P

(

R(gµν) − 2Λ
)

, (7)

where R = gµνRµν is the Ricci scalar, with Rµν being the Ricci curvature, and Λ is the cosmo-
logical constant. Also, MP = (8πGN)−1/2 is the Planck mass, with GN being the Newtonian
constant. Present the scalar graviton Lagrangian ∆Lg as

∆Lg = ∆Kg(∂µχ, χ) − ∆Vg(χ), (8)

with ∆Vg being the potential. In the lowest order, the kinetic term ∆Kg looks like

∆Kg =
1

2
κ2

0 ∂χ · ∂χ, (9)

with κ0 being a constant with the dimension of mass.
The proposed extension of GR is more deeply rooted in the affine Goldstone approach to

gravity [4]. This approach is based on two symmetries: the global affine symmetry (AS) and GC.
AS terminates the theory in the local tangent space, whereas GC insures the matching among
the various tangent spaces. Most generally, such a theory depends on an external nondynamical
metric g̃µν . This dependence violates GC and reveals the extra degrees of freedom contained in
the dynamical metric gµν . Call such an extended metric theory of gravity the “metagravity”.
Its minimal version, as considered in the report, depends just on g̃ and describes only the
scalar graviton in addition to the tensor one. Call specifically the so reduced theory – the
“scalar-tensor metagravity”.2 More generally, the metagravity can encompass also the vector
graviton [7], though in this case the unitarity is to be violated as well.

In the Lagrangian ∆Lg above, ∆Kg violates only GC, with ∆Vg(χ) violating also AS. The
GC violating part of the matter Lagrangian, ∆Lm, can be postulated in the simplest form as

∆Lm = −f0Jm(φm, gµν) · ∂χ, (10)

where Jmµ is the matter current and f0 is a scalar. In the case when f0 is a constant, ∆Lm

above violates only GC, still preserving AS. The possible dependence of f0 on χ would reflect the
violation of AS, though still preserving UC. Allowing for f0 → 0, independent of κ0, the matter
sector can be made as safe in confrontation between the theory and experiment as desired. For
this reason, ∆Lm will be disregarded in what follows.

Classical equations By varying the action (5) with respect to gµν , g̃ being fixed, one arrives
at the modified gravity equation:

Gµν = M−2
P

(

T (m)
µν + ∆T (g)

µν

)

. (11)

Here

Gµν = Rµν − 1

2
(R − 2Λ)gµν (12)

2This theory is not to be mixed with the “scalar-tensor gravity” [5]. The latter is the generally covariant
extension of GR by means of a genuine scalar field, which can not completely be absorbed by the metric. Also,
the theory proposed is to be distinguished from the “Unimodular Relativity” based on UC but with the dynamical
metric scale completely changed for the nondynamical one [6].
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is the usual gravity tensor and T
(m)
µν is the matter energy-momentum tensor defined by Lm. The

term ∆T
(g)
µν is the scalar graviton contribution looking as follows:

∆T (g)
µν = κ2

0

(

∂µχ∂νχ − 1

2
∂χ · ∂χgµν

)

+ ∆Vggµν

+
(

κ2
0∇ · ∇χ +

∂∆Vg

∂χ

)

gµν . (13)

Mutatis mutandis, the first line of the equation above is the ordinary energy-momentum tensor
of the scalar field. The second line is the effective wave operator of the field, with ∇µ being the
covariant derivative, ∇µχ = ∂µχ. This line appeared solely due to the dependence of χ on the
metric and would be absent for the genuine scalar field. We interpret the above contributions,
respectively, as those of the gravitational DM and the scale dependent part of DE, caused by
the scalar graviton. The latter having no specific quantum numbers and undergoing only the
gravitational interactions, such an association is quite a natural one.3,4

The r.h.s. of eq. (11) is thus proportional to the total energy momentum of the nontensor-
graviton origin, produced by the nongravitational matter and the scalar graviton. Due to the
Bianchi identity

∇µGµν = 0, (14)

the total energy-momentum is conserved:

∇µ(T µν
m + ∆T µν

g ) = 0, (15)

whereas the energy-momentum of the nongravitational matter alone, T
(m)
µν , ceases to conserve.

To really solve the gravity equations one should impose the four coordinate fixing conditions.
E.g., one can choose the canonical coordinates where g̃ = −1, supplemented by the three more
independent conditions on the dynamical metric gµν . As a result, gµν contains generally seven
independent components. Having solved the equations in the distinguished coordinates one can
recover the solution in the arbitrary observer’s coordinates. Confronting the latter solution with
experiment one could conceivably extract the sought g̃.

Linearized approximation To facilitate the problem of finding g̃ one could rely on LA. Not
knowing g̃, guess from some physical considerations the background metric ḡµν . Decompose the
dynamical metric in LA as follows

gµν = ḡµν + hµν ,

gµν = ḡµν − hµν + O((hµν)2), (16)

with ḡµν being the inverse background metric. For the consistency, it is to be supposed that
|hµν | � 1. The indices are raised and lowered with ḡµν and ḡµν , respectively, so that hµν =
ḡµλḡνρhλρ, etc. Then one gets

χ = (h0 + h)/2 + O(h2), (17)

where h ≡ ḡµνhµν and h0 = ln(ḡ/g̃). The latter term is a scalar parameter-field, not bound in
general to be small. Physically, it reflects the discrepancy between the background scale

√−ḡ,
which is at our disposal, and the nondynamical scale

√−g̃, which is given a priori.
The GR Lagrangian in LA becomes as follows

Lg =
1

8
M2

P

(

(∇̄λhµν)2 − 2(∇̄λhλµ)2 + 2∇̄λhλµ∇̄µh − (∇̄λh)2
)

+ O((hµν)3), (18)

3The above division on DM and DE is rather conventional. In particular in the limit κ0 → 0, the whole
contribution of the scalar graviton looks like DE.

4The other kinds of DM, if any, are to be included in the matter Lagrangian.
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with ∇̄µ being the background covariant derivative and ∇̄µh = ∂µh. The Λ-term is omitted
here and in what follows. For the respective gravity tensor, one gets

Gµν = −1

2

(

∇̄ · ∇̄hµν − ∇̄µ∇̄λhλν − ∇̄ν∇̄λhλµ + ∇̄µ∇̄νh
)

− 1

2

(

∇̄λ∇̄ρhλρ − ∇̄ · ∇̄h
)

ḡµν , (19)

independent of h0. The Lagrangian above is invariant under the gauge transformations

hµν(x) → hµν(x) + ∇̄µξν + ∇̄νξµ, (20)

with arbitrary ξµ corresponding to GC. In particular, one has h(x) → h(x) + 2∇̄ · ξ. By this
token, h can be removed, and thus Lg, taken alone, does not produce any physical manifestations
for the scalar graviton.

The contribution of ∆Lg to the gravity equations in terms of h0 and h can be read off
from eqs. (13), (16) and (17). This contribution is invariant only under the restricted gauge
transformations with ∇̄ · ξ = 0 or, otherwise, ∂ · (

√−ḡξ) = 0. In the curved background,
this corresponds to the residual UC. To solve the gravity equations one should impose on hµν

the three gauge fixing conditions, leaving thus seven independent components. Comparing the
solution with observations one can conceivably extract thereof h0 and, under the chosen ḡ, the
looked for g̃.

Quantization Assuming to have found g̃, rescale the background metric to adjust it to the
external nondynamical scale, so that ḡ = g̃. Under this choice, h0 vanishes. The GC preserving
part of the gravity Lagrangian stays as before. The GC violating part reads

∆Lg =
1

8

(

κ2
0(∇̄λh)2 − µ4

0h
2
)

+ O(h4), (21)

with the potential supposed to be as follows

∆Vg(h) =
1

8
µ4

0h
2 + O(h4) (22)

and µ0 being a constant with the dimension of mass. The Lagrangian ∆Lg possesses only the
residual UC, with ∇̄ · ξ = 0 insuring h → h. Normalized properly, the true field for the scalar
graviton is κ0h/2, with the constant κ0 characterizing thus the scale of the wave function. At
κ0 → 0, the wave function squeezes formally to dot. The other free constant, µ0, characterizes
the scalar graviton mass, m0 = µ2

0/κ0.
Finally, the gauge fixing Lagrangian in the case of UC can be chosen similar to ref. [8] as

Lgf = −λ(∇̄µ∇̄λhλν − ∇̄ν∇̄λhλµ)2, (23)

with λ being the indefinite Lagrange multiplier. This condition fixes three components in
hµν , the scalar h remaining untouched. The forth independent gauge condition which is to be
imposed in GR is now abandoned. It is superseded by the GC violating term. The latter looks
superficially as the gauge fixing term but with the definite coefficients. This is the principle
difference between the two kinds of terms. In the GC limit, κ0 → 0 and µ0 → 0, the given
quantum theory becomes underdetermined and requires one more gauge condition. For this
reason, the GC restoration is, generally, singular.

Altogether, one should study the present theory of the field hµν in the curved background.
As usually, this requires the transition to the local inertial coordinates, what can in principle be
done. To facilitate the quantization procedure suppose the Lorentzian background, ḡµν = ηµν ,
with the effect that ∇̄µ = ∂µ. The required ghost system is found in this case in ref. [8]. The
respective propagator can be shown to become

Dµνρσ(x − x′) =
1

4

(

P (2)
µνρσ(λ)

1

∂ · ∂ +
1

ε2
0

P (0)
µνρσ

1

∂ · ∂ + m2
0

)

iδ4(x − x′), (24)
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where ε0 = κ0/MP. The first term in the propagator corresponds to the massless tensor graviton.

The tensor projector P
(2)
µνρσ , unspecified here, corresponds to the six components of the tensor

graviton off the mass shell, as in GR. The second term, with the scalar projector P
(0)
µνρσ =

∂µ∂ν∂ρ∂σ/(∂ · ∂)2, describes additionally the scalar graviton. Altogether, the theory describes
the seven propagating degrees of freedom reflecting ultimately the residual three-parameter UC.

In the limit κ0 → 0, µ0 being fixed, one gets for the scalar part of the propagator

D(0)
µνρσ(x − x′) ' 1

4ω2
0

P (0)
µνρσiδ4(x − x′), (25)

with ω0 ≡ ε0m0 = µ2
0/MP being finite. In this limit, the theory describes the massless tensor

graviton, as in GR, plus the contact scalar interactions. The GC restoration limit, κ0 → 0 and
µ0 → 0, is indefinite in accord with the necessity of adding one more gauge condition.5

4 Conclusion

In conclusion, the self-consistent extension of GR, with the explicit violation of GC to the resid-
ual UC, is developed. Being based on the gauge principle, though with the reduced covariance,
the extension is as consistent theoretically as GR itself. In addition to the massless tensor gravi-
ton, the respective theory – the scalar-tensor metagravity – describes the massive scalar graviton
as the part of the metric field. The scalar graviton is the natural challenger for the gravitational
DM and/or the scale dependent part of DE. The restoration of GR being unattainable on the
whole, the extension may be not quite safe vs. observations. Its experimental consistency needs
investigation.
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and M.I. Vysotsky for discussions.
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