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Abstract

In this presentation I review basic properties of the simplest Higgs phase of gravity called
ghost condensation, and discuss possible applications and observational bounds.

1 Introduction

Acceleration of the cosmic expansion today is one of the greatest mysteries in both cosmology
and fundamental physics. Assuming that Einstein’s general relativity is the genuine description
of gravity all the way up to cosmological distance and time scales, the so called concordance
cosmological model requires that about 70% of our universe should be some sort of energy with
negative pressure, called dark energy. However, since the nature of gravity at cosmological scales
has never been probed directly, we do not know whether the general relativity is really correct
at such infrared (IR) scales. Therefore, it seems natural to consider modification of general
relativity in IR as an alternative to dark energy. Dark energy, IR modification of gravity and
their combination should be tested and distinguished by future observations and experiments.

From the theoretical point of view, however, IR modification of general relativity is not an
easy subject. Most of the previous proposals are one way or another scalar-tensor theories of
gravity, and are strongly constrained by e.g. solar system experiments [1] and the theoretical
requirement that ghosts be absent [2, 3, 4]. The massive gravity theory [5] and the Dvali-
Gabadadze-Porrati (DGP) brane model [6] are much more interesting IR modification of gravity,
but they are known to have macroscopic UV scales [7, 8]. A UV scale of a theory is the scale
at which the theory breaks down and loses its predictability. For example, the UV scale of
the 4D general relativity is the Planck scale, at which quantum gravity effects are believed to
become important. Since the Planck scale is microscopic, the general relativity maintains its
predictability at essentially all scales we can directly probe. On the other hand, in the massive
gravity theory and the DGP brane model, the UV scale is macroscopic. For example, if the scale
of IR modification is the Hubble scale today or longer then the UV scale would be ∼ 1, 000km or
longer. At the UV scale an extra degree of freedom, which is coupled to matter, becomes strongly
coupled and its quantum effects cannot be ignored. This itself does not immediately exclude
those theories, but means that we need UV completion in order to predict what we think we
know about gravity within ∼ 1, 000km. Since this issue is originated from the IR modification
and the extra degree of freedom cannot be decoupled from matter, it is not clear whether the
physics in IR is insensitive to unknown properties of the UV completion. In particular, there
is no guarantee that properties of the IR modification of gravity will persist even qualitatively
when the theories are UV completed in a way that they give correct predictions about gravity
at scales between ∼ 1, 000km and ∼ 0.1mm.

Ghost condensation is an analogue of the Higgs mechanism in general relativity and modifies
gravity in IR in a way that avoids the macroscopic UV scale [9] 1. In ghost condensation the
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theory is expanded around a background without ghost and the low energy effective theory has
a universal structure determined solely by the symmetry breaking pattern. While the Higgs
mechanism in a gauge theory spontaneously breaks gauge symmetry, the ghost condensation
spontaneously breaks a part of Lorentz symmetry since this is the symmetry relevant to gravity.
In a gauge theory the Higgs mechanism makes it possible to give a mass term to the gauge
boson and to modify the force law in a theoretically controllable way. Similarly, the ghost
condensation gives a “mass term” to the scalar sector of gravity and modifies gravitational
force in the linearized level even in Minkowski and de Sitter spacetimes. The Higgs phase of
gravity provided by the ghost condensation is simplest in the sense that the number of Nambu-
Goldstone bosons associated with spontaneous Lorentz breaking is just one and that only the
scalar sector is essentially modified.

2 Ghost Condensation

The ghost condensation can be pedagogically explained by comparison with the usual Higgs
mechanism as in the table shown below. First, the order parameter for ghost condensation is
the vacuum expectation value (vev) of the derivative ∂µφ of a scalar field φ, while the order
parameter for Higgs mechanism is the vev of a scalar field Φ itself. Second, both have instabilities
in their symmetric phases: a tachyonic instability around Φ = 0 for Higgs mechanism and
a ghost instability around ∂µφ = 0 for ghost condensation. In both cases, because of the
instabilities, the system should deviate from the symmetric phase and the order parameter
should obtain a non-vanishing vev. Third, there are stable point where small fluctuations
do not contain tachyons nor ghosts. For Higgs mechanism, such a point is characterized by
the vev of the order parameter satisfying V ′ = 0 and V ′′ > 0. On the other hand, for ghost
condensation a stable point is characterized by P ′ = 0 and P ′′ > 0. Fourth, while the usual Higgs
mechanism breaks usual gauge symmetry and changes gauge force law, the ghost condensation
spontaneously breaks a part of Lorentz symmetry (the time translation symmetry) and changes
linearized gravity force law even in Minkowski background. Finally, generated corrections to
the standard Gauss-law potential is Yukawa-type for Higgs mechanism but oscillating for ghost
condensation.
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At this point one might wonder if the system really reach a configuration where P ′ = 0
and P ′′ > 0. Actually, it is easy to show that this is the case. For simplicity let us consider
a Lagrangian Lφ = P (−(∂φ)2) in the expanding FRW background with P of the form shown
in the upper right part of the table. We assume the shift symmetry, the symmetry under the
constant shift φ → φ + c of the scalar field. This symmetry prevents potential terms of φ from
being generated. The equation of motion for φ is simply ∂t[a

3P ′φ̇] = 0, where a is the scale
factor of the universe. This means that a3P ′φ̇ is constant and that

P ′φ̇ ∝ a−3
→ 0 (a → ∞) (1)

as the universe expands. We have two choices: P ′ = 0 or φ̇ = 0, namely one of the two bottoms
of the function P or the top of the hill between them. Obviously, we cannot take the latter
choice since it is a ghosty background and anyway unstable. Thus, we are automatically driven
to P ′ = 0 by the expansion of the universe. In this sense the background with P ′ = 0 is an
attractor.

Having shown that the ghost condensate is an attractor, let us construct a low energy
effective field theory around this background. For this purpose let us consider a small fluctuation
around the background with P ′ = 0. For φ = M 2t + π, the quadratic action for π coming from
the Lagrangian P is

∫

d4x[(P ′(M4) + M4P ′′(M4))π̇2 − P ′(M4)(∇π)2]. By setting P ′(M4) = 0
we obtain the time kinetic term M 4P ′′(M4)π̇2 with the correct sign. Unless the function P
is fine-tuned, P ′′ is non-zero at P ′ = 0. This means that the coefficient of the time kinetic
term is non-vanishing and, thus, we do not have the strong coupling issue which the massive
gravity and the DGP brane model are facing with. On the other hand, the coefficient of (∇π)2

vanishes at P ′ = 0 and the simple Lagrangian P does not give us a spatial kinetic term for
π. However, this does not mean that there is no spatial kinetic term in the low energy EFT
for π. This just says that the leading spatial kinetic term is not contained in P and that we
should look for the leading term in different parts. Indeed, other terms like P̃ ((∂φ)2)Q(�φ) do
contain spatial kinetic terms for π but the spatial-derivative expansion starts with the fourth
derivative: (∇2π)2 + · · · . If there is a non-vanishing second-order spatial kinetic term (∇π)2

then it can be included in P by redefinition and the redefined P ′ goes to zero by the expansion
of the universe as shown above. Namely, the expansion of the universe ensures that the spatial-
derivative expansion starts from (∇2π)2 + · · · . Combining this spatial kinetic term with the
previously obtained time kinetic term and properly normalizing π, we obtain the low energy
effective action of the form

M4

∫

d4x

[

1

2
π̇2

−
α

M2
(∇2π)2 + · · ·

]

, (2)

where α is a dimensionless parameter of order unity 2. One might worry that other (nonlinear)
terms in effective theory such as π̇(∇π)2 might mess up the effective action. In fact, it turns out
that all such terms are irrelevant at low energy [9]. An important fact to show this is that the
scaling dimension of π is not the same as its mass dimension 1 but is 1/4, reflecting the situation
that the Lorentz symmetry is broken spontaneously. Moreover, it is also straightforward to show
that all spurious modes associates with higher time derivative terms such as (φ̈)2 have frequency
above the cutoff M and, thus, should be ignored. In this sense, we are assuming the existence
of a UV completion but not assuming any properties of it. Finally, it must be noted that the
effective action of the form (2) is stable against radiative corrections. Indeed, the only would-
be more relevant term in the effective theory is the usual spatial kinetic term (∇π)2, but its
coefficient P ′ is driven to an extremely small value by the expansion of the universe even if it
is radiatively generated.

The effective action (2) would imply the low energy dispersion relation for π is ω2 ' αk4/M2.
However, since the background spontaneously breaks Lorentz invariance, π couples to gravity

2With this normalization, π has the dimension of length.
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in the linearized level even in Minkowski or de Sitter background. Hence, mixing with gravity
introduces an order M 2/M2

pl correction to the dispersion relation. As a result the dispersion

relation in the presence of gravity is ω2 ' αk4/M2 − αM2k2/2M2
pl. This dispersion relation

leads to IR modification of gravity due to Jean’s instability. Note that there is no ghost around
the stable background P ′ = 0 and the Jeans’s instability is nothing to do with a ghost.

In the above we have expanded a general Lagrangian consistent with the shift symmetry
around the stable background in order to construct the low energy EFT. This is the most
straightforward approach. An alternative, more powerful way is to use the symmetry breaking
pattern. In this approach, we actually do not need to specify a concrete way of the sponta-
neous symmetry breaking. In this sense, the ghost around φ̇ = 0 has nothing to do with the
construction of the EFT around P ′ = 0. Indeed, it is suffice to assume the symmetry breaking
pattern, namely from the full 4-dimensional Lorentz symmetry to the 3-dimensional spatial
diffeomorphism [9].

Here, let us briefly review this approach based on the symmetry breaking pattern. This
leads to the exactly same conclusion as above, but is more universal and can be applied to
any situations as far as the symmetry breaking pattern is the same. We assume that (i)
the 4-dimensional Lorentz symmetry is spontaneously broken down to a 3-dimensional spatial
diffeomorphism and that (ii) the background spacetime metric is maximally symmetric, either
Minkowski or de Sitter. With the assumption (i), we are left with the 3-dimensional spatial
diffeomorphism ~x → ~x′(t, ~x). Our strategy here is to write down the most general action
invariant under this residual symmetry. After that, the action for the Nambu-Goldstone (NG)
boson π is obtained by undoing the unitary gauge.

For simplicity let us consider the Minkowski background plus perturbation: gµν = ηµν +
hµν . The infinitesimal gauge transformation is δhµν = ∂µξν + ∂νξµ, where ξµ is a 4-vector
representing the gauge freedom. Under the residual gauge transformation ξ i (i = 1, 2, 3), the
metric perturbation transforms as

δh00 = 0, δh0i = ∂0ξi, δhij = ∂iξj + ∂jξi. (3)

Now let us seek terms invariant under the residual gauge transformation. Those terms must
begin at quadratic order since we assumed that the flat spacetime is a solution to the equa-
tion of motion. The leading term (without derivatives acted on the metric perturbations) is
∫

dx4M4h2
00. This is indeed invariant under the residual gauge transformation (3). From this

term, we can obtain the corresponding term in the effective action for the NG boson π. Since
h00 → h00 +2∂0ξ0, by promoting the broken symmetry ξ0 to a physical degree of freedom π, we
obtain the term

∫

dx4M4(h00−2π̇)2. This includes a time kinetic term for π as well as a mixing

term. At this point we wonder if we can get the usual space kinetic term (~∇π)2 or not. The only
possibility would be from (h0i)

2 since h0i → h0i−∂iπ under the broken symmetry transformation
ξ0 = π. However, this term is not invariant under the residual spatial diffeomorphism ξ i and,
thus, cannot enter the effective action. Actually, there are combinations invariant under the
spatial diffeomorphism. They are made of the geometrical quantity called extrinsic curvature.
The extrinsic curvature Kij in the linear order is Kij = ∂jh0j + ∂ih0j − ∂0hij and transforms
as a tensor under the spatial diffeomorphism. Thus,

∫

dx4M̃2(Ki
i )

2 and
∫

dx4M̄2KijKij are
invariant under spatial diffeomorphism and can be used in the action. Since Kij → Kij −∂i∂jπ

under the broken symmetry ξ0 = π, we obtain
∫

dx4(M̃2 +M̄2)(~∇2π)2. Combining these terms
with the above time kinetic term and properly normalizing the definition of π and M , we obtain

Leff = M4

{

1

2

(

π̇ −
1

2
h00

)2

−
α

M2
(~∇2π)2 + · · ·

}

, (4)

where α is a dimensionless constant of order unity. By setting h00 = 0, this completely agrees
with (2), which was obtained by expanding the scalar field action explicitly around the stable
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background. Here, in deriving the effective action all we needed was the symmetry breaking
pattern. Thus, the low energy EFT of the ghost condensation is universal and should hold as
far as the symmetry breaking pattern is the same.

In ghost condensation the linearized gravitational potential is modified at the length scale
rc in the time scale tc, where rc and tc are related to the scale of spontaneous Lorentz breaking
M as

rc '
MPl

M2
, tc '

M2
Pl

M3
. (5)

Note that rc and tc are much longer than 1/M . The way gravity is modified is peculiar. At
the time when a gravitational source is turned on, the potential is exactly the same as that
in general relativity. After that, however, the standard form of the potential is modulated
with oscillation in space and with exponential growth in time. This is an analogue of Jeans
instability, but unlike the usual Jeans instability, it persists in the linearized level even in
Minkowski background. The length scale rc and the time scale tc above are for the oscillation
and the exponential growth, respectively. At the time ∼ tc, the modification part of the linear
potential will have an appreciable peak only at the distance ∼ rc. At larger distances, it will
take more time for excitations of the Nambu-Goldstone boson to propagate from the source and
to modify the gravitational potential. At shorter distances, the modification is smaller than at
the peak position because of the spatial oscillation with the boundary condition at the origin.
The behavior explained here applies to Minkowski background, but in ref. [9] the modification
of gravity in de Sitter spacetime was also analyzed. It was shown that the growing mode of
the linear gravitational potential disappears when the Hubble expansion rate exceeds a critical
value Hc ∼ 1/tc. Thus, the onset of the IR modification starts at the time when the Hubble
expansion rate becomes as low as Hc.

If we take the M/MPl → 0 limit then the Higgs sector is completely decoupled from the
gravity and the matter sectors and, thus, the general relativity is safely recovered. Therefore,
cosmological and astrophysical considerations in general do not set a lower bound on the scale
M of spontaneous Lorentz breaking, but provide upper bounds on M . If we trusted the linear
approximation for all gravitational sources for all times then the requirement Hc <

∼ H0 would
give the bound M <

∼ (M2
PlH0)

1/3 ' 10MeV , where H0 is the Hubble parameter today [9].
However, for virtually all interesting gravitational sources the nonlinear dynamics dominates in
time scales shorter than the age of the universe. As a result the nonlinear dynamics cuts off
the Jeans instability of the linear theory, and allows M <

∼ 100GeV [17].
Note that the ghost condensate provides the second most symmetric class of backgrounds

for the system of field theory plus gravity. The most symmetric class is of course maximally
symmetric solutions: Minkowski, de Sitter and anti-de Sitter. The ghost condensate minimally
breaks the maximal symmetry and introduces only one Nambu-Goldstone boson.

Because of the universality of the low energy EFT, it is worthwhile investigating properties of
the Higgs phase of gravity, whether or not it leads to interesting physical phenomena. Actually,
it turns out that the physics in the Higgs phase of gravity is extremely rich and intriguing.
They include IR modification of gravity [9], a new spin-dependent force [18], a qualitatively
different picture of inflationary de Sitter phase [19, 20], effects of moving sources [21, 22],
nonlinear dynamics [23, 17], properties of black holes [24, 25, 26], implications to galaxy rotation
curves [27, 28, 29], dark energy models [30, 31, 32], other classical dynamics [33, 34], attempts
towards UV completion [35, 36], and so on.

3 Possible Applications

Dark energy: In the usual Higgs mechanism, the cosmological constant (cc) would be negative
in the broken phase if it is zero in the symmetric phase. Therefore, it seems difficult to imagine
how the Higgs mechanism provides a source of dark energy. On the other hand, the situation
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is opposite with the ghost condensation: the cc would be positive in the broken phase if it is
zero in the symmetric phase. Hence, while this by itself does not solve the cc problem, this can
be a source of dark energy.

Dark matter: If we consider a small, positive deviation of P ′ from zero then the ho-
mogeneous part of the energy density is proportional to a−3 and behaves like dark matter.
Inhomogeneous linear perturbations around the homogeneous deviation also behaves like dark
matter. However, at this moment it is not clear whether we can replace dark matter with ghost
condensate. We need to see if it clumps properly. Ref. [17] can be thought to be a step towards
this direction.

Inflation: We can also consider inflation within the regime of the validity of the EFT with
ghost condensation. In the very early universe where H is higher than the cutoff M , we do not
have a good EFT describing the sector of ghost condensation. However, the contribution of this
sector to the total energy density ρtot is naturally expected to be negligible: ρghost ∼ M4 �

M2
p H2 ' ρtot. As the Hubble expansion rate decreases, the sector of ghost condensation enters

the regime of validity of the EFT and the Hubble friction drives P ′ to zero. If we take into
account quantum fluctuations then P ′ is not quite zero but is ∼ (H/M)5/2 ∼ (δρ/ρ)2 ∼ 10−10 in
the end of ghost inflation. In this way, we have a consistent story, starting from the outside the
regime of validity of the EFT and dynamically entering the regime of validity. All predictions
of the ghost inflation are derived within the validity of the EFT, including the relatively low-H
de Sitter phase, the scale invariant spectrum and the large non-Gaussianity [19].

Black hole: In ref. [25] we consider the question “what happens near a black hole?”
A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of
which has the tangent vector uµ = −gµν∂νφ. It is argued that the ghost condensate in this
picture approximately corresponds to a congruence of geodesics and the accretion rate of the
ghost condensate into a black hole should be negligible for a sufficiently large black hole. This
argument is confirmed by a detailed calculation based on the perturbative expansion w.r.t. the
higher spatial kinetic term. The essential reason for the smallness of the accretion rate is the
same as that for the smallness of the tidal force acted on an extended object freely falling into
a large black hole.

4 Bounds

In this section we consider the bounds on the symmetry breaking scale M . We argue that
the nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M <

∼
100 MeV [17].

4.1 Jeans Instability

For M >
∼ 10 MeV, the Jeans instability time is shorter than the lifetime of the universe, and we

must consider the effects of this instability. We have seen that the nonlinear effects dominate
near interesting gravitational sources, but the linear dynamics still controls the behavior of
the system for sufficiently weak ghostone amplitudes. In the linear regime, fluctuations with
wavelength λ >

∼ LJ grow on a time scale

τ ∼ TJ

λ

LJ

, (6)

where

LJ ∼
MPl

M2
, TJ ∼

M2
Pl

M3
(7)

are the Jeans length and time scales. Wavelengths of order LJ become unstable first, and longer
wavelengths take longer to grow. Since fluctuations on wavelength shorter than LJ are stable,
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we expect the minimum size of a positive or negative energy region to be LJ. On the other
hand, the maximum size is determined by requiring that the time scale τ above be shorter than
the Hubble time. Hence, a positive or negative region can grow within the age of the universe
if its size L is in the range

LJ <
∼ L <

∼ Lmax, (8)

where

Lmax ∼
M

MPlH0

∼ R�

(

M

100 GeV

)

. (9)

The unstable modes grow at least until nonlinear effects become important. This happens
for π >

∼ πc, where

πc ∼
λ2

τ
. (10)

or equivalently Σ >
∼ Σc with

Σc ∼
πc

τ
∼

λ2

τ2
∼

M2

M2
Pl

. (11)

It is reasonable to assume that the nonlinear effects cut off the Jeans instability at this critical
amplitude. This mechanism will fill the universe with regions of positive and negative ghostone
field with amplitude of order ±Σc and the size in the range (8). Since Σ is a conserved charge,
there will be equal amounts of positive and negative Σ.

The sun’s Newtonian potential triggers the Jeans instability of the ghost condensate and,
thus, it is expected that there be a positive or negative region around the sun. This is justified
if the ‘aether’ is efficiently dragged by the sun and we now argue that this is indeed the case.
To do this, it is useful to work in the rest frame of the sun. Far from the sun, the aether is
moving with constant velocity v ∼ 10−3, but near the sun the velocity field will be distorted by
the presence of the sun. By using the fluid picture of the ghostone field, we estimate the effect
on a fluid particle with speed v and impact parameter r. The fluid particle will be a distance
of order r away for a time ∆t ∼ r/v, so the change in the particle velocity in the impulse
approximation is

∆v ∼
RS

r2
·
r

v
∼

RS

vr
, (12)

where RS is the Schwarzschild radius of the source. Thus, the change in the velocity of a fluid
particle becomes comparable to or greater than the initial velocity if r < rdrag, where

rdrag ∼
RS

v2
, (13)

For our sun, rdrag ∼ 10R�, so the dragged region extends outside the solar radius.3

We require that the absolute value of the mass of the lump with the critical density ρc and
the size Lmax be at worst less than the solar mass:

ρcL
3
max

<
∼ M�. (14)

This requirement gives the bound
M <

∼ 103 GeV. (15)

Since the high power of M (the l.h.s. ∝ M 9) is involved in (14), a more stringent requirement
on the mass of the lump will not substantially improve the bound.

3This radius is still much less than the orbital radius of Mercury.
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4.2 Twinkling from Lensing

We have argued that if M >
∼ 10 MeV, then the Jeans instability fills the universe with regions

of positive and negative energy of size L >
∼ LJ ∼ MPl/M

2 with energy density ρc ∼ M6/M2
Pl.

This will happen everywhere, in particular in the voids between galaxies. Any light that travels
to us from far away will therefore be lensed by these positive and negative regions. These
positive and negative energy regions move, because the local rest frame of the lensing regions
is different from that of our galaxy, so the result is that the observed luminosity of any point
source will change with time. This is similar to the twinkling of the stars in the night sky caused
by time dependent temperature differences in the atmosphere. In this subsection, we work out
the bounds on the ghost condensate from this effect.

Suppose that the universe is filled with regions of positive and negative energy with size L
and density ρc. A light ray traveling through such a region will lens by an angle

∆θ ∼ Φ ∼
ρcL

2

M2
Pl

∼
M6L2

M4
Pl

. (16)

If a light ray travels a distance d � L, then it will undergo N ∼ d/L uncorrelated lensing
events, so the total angular deviation will be enhanced by a N 1/2 random walk factor:

∆θtot ∼

(

d

L

)1/2 M6L2

M4
Pl

. (17)

We see that the largest angular deviation comes from the largest L and largest d.
The size of L is limited by the time for the Jeans instability to form as in (8). If the source

is the cosmic microwave background, then d ∼ H−1
0 and we obtain

∆θCMB ∼
M15/2

M
11/2

Pl H2
0

∼

(

M

100 GeV

)15/2

, (18)

for the largest regions with the size L ∼ Lmax. The high power of M makes the precise
experimental limit on ∆θCMB irrelevant, and we obtain the bound

M <
∼ 100 GeV. (19)

For M ∼ 100 GeV, the size of the largest critical region is L ∼ 1012 cm, approximately the
radius of the sun. The local velocity of these regions relative to our galaxy is of order 10−3,
so the time scale for one of these regions to cross the line of sight is of order a day, which is
therefore the time scale of the variation.

If there is a distant astrophysical source that is observed to shine with very little time
variation, it may give a competitive bound. But given the high power of M involved, it seems
difficult to improve on this bound significantly.

4.3 Supernova time-delay

Gravitational lensing considered in the previous subsection induces a time-delay for light-rays
coming from far distances. With this time-delay effect, observed supernovae should be older
than they appear. Thus, this effect would change the estimate of dark energy by observation
of Type Ia supernovae. Since the determination of the dark energy by supernovae observation
is known to be consistent with the WMAP data, we require that the time-delay is sufficiently
shorter than the total time:

∆t

t
∼ (∆θ)2 ∼

M6L2
max

M4
Pl

≤ 1. (20)

Note that the precise experimental limit on the ∆t/t is irrelevant because of the higher power
of M involved in the l.h.s. From this we obtain the bound

M <
∼ 103 GeV. (21)
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5 Summary

The usual Higgs mechanism gives a mass to a gauge boson in a theoretically controllable way
by spontaneously breaking the gauge symmetry. Similarly, the ghost condensation gives a
“mass” to the scalar-sector of gravity by spontaneously breaking a part of Lorentz symmetry,
the invariance under time re-parameterization. It has been shown that the structure of low
energy effective field theory of ghost condensation is determined by the symmetry breaking
pattern and does not depend at all on the way the symmetry is broken. In this sense the low
energy effective field theory of ghost condensation has nothing to do with ghost.

The theory of ghost condensation opens up a number of new avenues for attacking cosmo-
logical problems, including inflation, dark matter, dark energy and black holes. Finally, it has
been argued that the theory is compatible with all current experimental observations if the
scale of spontaneous Lorentz breaking is lower than ∼ 100 MeV. Our current understanding
of the dynamics of gravity in Higgs phase is very immature. Most of its properties still remain
unexplored.
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