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Abstract

In computing quantum effects, it is necessary to perform a sum over all intermediate
states consistent with prescribed initial and final states. Divergences arising in the course of
evaluating this sum forces one to “renormalize” parameters characterizing the system. An
ambiguity inherent in this rescaling is parameterized by a dimensionful parameter µ2 which
serves to set a scale for the process. Requiring that the explicit and implicit dependence of
a physical quantity on µ2 conspire to cancel leads to the so-called “renormalization group”
equation [1-10]. It has proved possible to extract a lot of useful information from this
equation; we will enumerate a number of these in this report.

(I) The first instance we will analyze to show the utility of this approach is the relationship
between the bare and renormalized parameters in the context of dimensional regularization and
mass independent renormalization [4,11-13].

In this approach, bare quantities appearing in the n = 4 − 2ε dimensional Lagrangian are
expanded in terms of poles at ε = 0. In particular, the bare coupling gB and the renormalized
coupling g are related by

gB = µε
∞∑

ν=0

aν(g)

εν
(1)

where µ is a renormalization induced scalar parameter. In minimal subtraction,

a0(g) = g. (2)

Explicit calculation leads to

aν(g) =
∞∑

k=ν

ak,νg
2k+1 (3)

with
a0,0 = 1. (4)

The sum in eq. (1) can now be reorganized to result in

gB = µε
∞∑

k=0

g2k+1Sk

(
g2

ε

)
(5)

where

Sk(ξ) =
∞∑

`=0

ak+`,` ξ` (6)
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and
Sk(0) = ak,0. (7)

Since gB is independent of µ,

µ
dgB

dµ
=

(
µ

∂

∂µ
+ µ

dg

dµ

∂

∂g

)
gB = 0. (8)

Equation (8) and (1) are consistent at order ε0 provided

a1 −
a0

a′0
a′1 + βa′0 = 0 (9)

where

µ
dg

dµ
= β(g) − ε

a0

a′0
, (10)

so that

β(g) =
a2

0

a′ 20

d

dg

(
a1

a0

)
. (11)

Terms of order ε−k result in the equation

−a2
0

a′0

d

dg

(
ak

a0

)
+ βa′k−1 = 0 (12)

so that ak is determined by ak−1 and β(k ≥ 2), as well as a0(g). We also find that together eqs.
(1) and (6) result in

∞∑

n=0

g2n

[
g3

ξ
Sn(ξ) +

(
−a0

a′0

g2

ξ
+ β

)(
(2n + 1)Sn(ξ) + 2ξS′

n(ξ)
)]

= 0 (13)

where ξ = g2

ε . Upon making the expansions

a0(g)

a′0(g)
=

g + a1,0g
3 + a2,0g

5 + . . .

1 + 3a1,0g2 + 5a2,0g4 + . . .
= g + α3g

3 + α5g
5 + . . . (14)

and

β(g) =

∞∑

k=1

B2k+1g
2k+1 (15)

then by looking at contributions to eq. (13) in ascending powers of g,

(1 − ξB3) S′

0 −
1

2
B3S0 = 0 (16)

1

ξ
S1 +

(
−1

ξ
+ B3

)(
3S1 + 2ξS′

1

)
+

(
−α3

ξ
+ B5

)(
S0 + 2ξS′

0

)
= 0 (17)

etc., whose solutions subject to eq. (7) are

S0(ξ) = w−1/2 (18)

S1(ξ) =
1

w1/2(1 − w)

[(
α3

2
− B5

2B3

)(
−1 + w−1

)
− B5

2B3
lnw

]
, (19)

where w = 1 − B3ξ. It is apparent that in the limit ε → 0(w → ∞),

S0 → 0 S1 → 0 (20)
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which is consistent with Sk → 0(k ≥ 2). This indicates that the bare coupling gB vanishes as
ε vanishes, which is not what might be expected from eq. (1). One can also derive this result
from eq. (12), as upon multiply eq. (12) by ε−k+1 and summing over k we arrive at

ε

(
gB − a0(g)

a′0(g)

∂

∂g
gB

)
+ β(g)

∂gB

∂g
= 0 (21)

so that

gB = µε exp


−

∫ g

K
dx

ε(
β(x) − εa0(x)

a′

0
(x)

)


 (22)

where K is a cut off. Consistency with eqs. (18) and (19) is achieved by having

gB = µε exp


−

∫ g

0
dx


 ε

β(x) − εa0(x)
a′

0
(x)

+
1

x




 . (23)

In the limit ε → 0,

gB → g exp

(
− lim

δ→0+

∫ g

δ

dx

x

)
= 0 (24)

which is consistent with eq. (20).
The function a0(g) characterizes the choice of renormalization scheme; minimal subtraction

uses a renormalized coupling g̃ where
g̃ = a0(g). (25)

By eq. (10),

µ
dg̃

dµ
= β̃(g̃) − εg̃ =

(
dg̃

dg

)(
µ

dg

dµ

)
= a′0(g)

(
β(g) − ε

a0(g)

a′0(g)

)
(26)

so that
β̃(g̃) = a′0(g)β(g). (27)

(II) The “method of characteristics” can also be used to analyze the renormalization group
equation, in particular eq. (8) [14,9,12,15-17]. We shall examine a simple example of how this
technique can be used to extract information from a first order partial differential equation.

Suppose A0(x, y) is a solution to the equation

f(x, y)
∂A(x, y)

∂x
+ g(x, y)

∂A(x, y)

∂y
+ h(x, y)A(x, y) = 0 (28)

where f , g and h are prescribed functions of x and y. If now we have “characteristic functions”
x(t) and y(t) defined by

dx(t)

dt
= f(x(t), y(t)); x(0) = x (29)

dy(t)

dt
= g(x(t), y(t)); y(0) = y (30)

then

A(x(t), y(t)) = A0(x(t), y(t)) exp

∫ t

0
h(x(t′), y(t′))dt′ (31)

reduces to A0(x, y) when t = 0 and d
dtA(x(t), y(t)) = 0.

For example, if f = x, g = y2 and h = 0, a solution to eq. (28) is

A0(x, y) = xe1/y (32)
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while by eqs. (29) and (30),
x(t) = xet (33)

y(t) =
y

1 − yt
. (34)

We indeed find that for all t

A0(x(t), y(t)) =
(
xet
)
exp

[
1

y/(1 − yt)

]
= xe1/y. (35)

However, if we knew only an approximate solution

A
(1)
0 (x, y) = x

(
1 +

1

y

)
(36)

then we might make the ansatz

A0(x, y) = x
∞∑

n=0

αn

(
1

y

)n

, (37)

with
α0 = α1 = 1. (38)

The differential equation

x
∂A0

∂x
+ y2 ∂A0

∂y
= 0 (39)

shows that

αn = (n + 1)αn+1 =
1

n!
(40)

and so

A0(x, y) = x
∞∑

n=0

1

n!

(
1

y

)n

= xe1/y. (41)

Eq. (37) is analogous to eq. (5); in both cases we have knowledge of some part of a solution
to a first order partial differential equation, and the remaining portion of the solution can be
determined by a recursion relation. In the equation

(
µ

∂

∂µ
+ (−εg + β(g))

∂

∂g

)
gB = 0 (42)

we in general have only a partial knowledge of β(g) itself; knowing β(g) to k-loop order, as well
using the fact that in the MS scheme a0(g) = g, allows one to determine S0(ξ) . . . Sk(ξ) in eq.
(5) using eq. (42).

One could also use the characteristic function of eqs. (33) and (34) in conjunction with the
approximate solution of eq. (36) to recover the exact solution of eq. (32). If we were to examine

A
(1)
0 (x(t), y(t)) =

(
xet
) [

1 +
1

(y/(1 − yt))

]
(43)

then it is apparent that at a particular value of t (namely t = 1
y ) we have

A
(1)
0

(
x

(
1

y

)
, y

(
1

y

))
= A0(x, y). (44)

(Furthermore, the ansatz of eq. (37) yields

A0(x(t), y(t)) = xet
∞∑

n=0

αn

(
1 − yt

y

)
(45)
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which is independent of t only if eq. (40) is satisfied, in which case we also recover eq. (32).)
An analogous treatment of eq. (42) using the characteristic functions µ(t) and g(t) can also

be performed. We first define
dµ(t)

dt
= µ(t) (µ(0) = µ) (46)

dg(t)

dt
= −εg(t) + β(g(t)) (g(0) = g). (47)

Equations (46) and (47) are solved iteratively using an approach outlined in [15,12,17,18]. A
rescaling

ε → ελ t → t/λ g(t) → g(t)
√

λ (48)

followed by an expansion

g(t) = g0(t) + g1(t)λ + g2(t)λ
2 + . . . (49)

with
gn(0) = gδn0 (50)

leads to
µ(t) = µet/λ (51)

as well as

g0(t) = g2

[
B3

ε

(
1 − 2e2εt

)
+ e2εt

]
−1

(52)

g1(t) =
B5e

2εtg5

2ε
[

B3g2

ε +
(
1 − B3g2

ε

)
e2εt
]3/2





1 − B3

ε g2

(
B3g2

ε

)2 (53)

ln




B3g2

ε +
(
1 − B3g2

ε

)
e2εt

e2εt


+

1(
B3

ε g2
)
(

1 − 1

e2εt

)


etc. Together, eqs. (1), (3), (48) and (49) lead to

gB(µ(t), g(t)) = µελ

{
λ1/2

[
g0 +

a11g
3
0

ε
+

a22g
5
0

ε2
+ . . .

]
(54)

+λ3/2

[(
g1 +

3a11g
2
0 g1

ε
+

5a22g
4
0 g1

ε2
+ . . .

)

+

(
a21g

5
0

ε
+

a31g
7
0

ε2
+ . . .

)]
+ O(λ5/2)

}
.

In the limit t → ∞ we find from eqs. (52) and (53) that

g0 → g

(
1 − B3g

2

ε

)
e−εt (55)

g1 → B5g
5

2ε

(
1 − B3g

2

ε

)−3/2





1 − B3g2

ε(
B3g2

ε

)2 ln

(
1 − B3g

2

ε

)
+

1(
B3g2

ε

)





e−et (56)

while
µελ → µελeεt. (57)
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From eqs. (54 - 57) we find that as t → ∞

gB = µελ





λ1/2


 g√

1 − B3g2

ε


+ λ3/2




B5g
5

2ε

1
(
1 − B3g2

ε

)3/2

×




1 − B3g2

ε(
B3g2

ε

)2 ln

(
1 − B3g

2

ε

)
+

1(
B3g2

ε

)











, (58)

which when λ = 1 reproduces what was found in eqs. (5), (18) and (19). The method of char-
acteristics should reproduce all of the Sn(ξ) appearing in eq. (5) as t → ∞. This is analogous
to eq. (43) reducing to eq. (44) when t = 1

y .

(III) Having illustrated how the renormalization group equation works by considering the re-
lationship between the bare and renormalized couplings when using dimensional regularization,
we now will examine how it can be employed in conjunction with the perturbative calculation
of a physical quantity [19-20].

In particular, if we consider R(s), the ratio of the total cross section σ (e+e− → (hadrons))
to the total cross section σ(e+e− → µ+µ−), we find that a perturbative calculation of R(s)
yields

R(S) = 3
∑

f

Q2
fS

[
x(µ2), ln

(
µ2

s

)]
(59)

where s is the centre of mass energy, µ2 is the renormalization scale and x(µ2) is the coupling
αs(µ

2)/π. As µ2 is unphysical, we have the renormalization group equation

µ2 dR(s)

dµ2
= 0 =

(
µ2 ∂

∂µ2
+ β(x)

∂

∂x

)
R(s) (60)

where

β(x(µ2)) = µ2 dx(µ2)

dµ2
. (61)

Perturbation theory results in the expansions

β(x) = −x2
∞∑

k=0

βkx
k (62)

S[x,L] = 1 +
∞∑

n=1

n−1∑

m=0

Tn,mxnLm (63)

where x = x(µ2) and L = ln
(

µ2

s

)
. Reorganizing the sum in eq. (63) so that in analogy with

eq. (5)

S[x,L] = 1 +

∞∑

n=1

xnSn(xL) (64)

where

Sn(ξ) =

∞∑

k=0

Tn+k,kξ
k (65)

leads to

(1 − β0ξ)
dSk

dξ
− kβ0Sk = (1 − δk,1)

k−1∑

`=1

β`

(
ξ

d

dξ
− ` + k

)
Sk−` (Sn(0) = Tn,0) (66)

6



upon substitution of eq. (64) into eq. (60). Solving these equations sequentially we obtain [20]

S1(ξ) = w−1 (w ≡ 1 − β0ξ) (67)

S2(ξ) =

[
T2,0 −

β1

β0
lnw

]
w−2 (68)

S3(ξ) =

(
β2

1

β2
0

− β2

β0

)
w−2+

(
T3,0 −

(
β2

1

β2
0

− β2

β0

)
− β1

β0

(
2T2,0 +

β1

β0

)
lnw +

β2
1

β2
0

ln2 w

)
w−3 (69)

and

S4(ξ) = −1

2

[
β1

β0

(
β2

1

β2
0

− 2
β2

β0

)
+

β3

β0

]
w−2 +

(
2T2,0 +

β1

β0

)(
β2

1

β2
0

− β2

β0

)
w−3

+2

(
β1

β0

)(
β2

β0
− β2

1

β2
0

)
w−3 lnw +

[
T4,0 +

β3

2β0
− 1

2

β3
1

β3
0

(70)

−2T2,0

(
β2

1

β2
0

− β2

β0

)]
w−4 +

β1

β0

[
2
β2

1

β2
0

− 3
β3

β0
− 2T2,0

β1

β0
− 3T3,0

]
w−4 lnw

+
β1

β0

[
5β2

1

2β2
0

+ 3T2,0
β1

β0

]
w−4 ln2 w − β3

1

β3
0

w−4 ln3 w.

Sk(ξ) for k > 4 could be determined if Tk,0 and βk−1 were known. S1 is the “leading log” (LL)
sum; S2 is the “next to leading log” (NLL) sum etc.

The approximation to R(s) given by

S[x(µ), L(µ)] = 1 +

4∑

n=1

xn(µ)Sn(x(µ)L(µ)) (71)

where x(µ) is a solution to

µ2 dx(µ)

dµ2
= −x2(µ)

3∑

k=0

βkx
k(µ) (72)

is virtually independent of µ; using the purely perturbative result

S[x(µ), L(µ)] = 1 +

4∑

n=1

3∑

m=0

Tn,mxn(µ)Lm(µ) (73)

has a pronounced dependence on µ. This is not surprising, as eq. (72) is a solution of the renor-
malization group equation, with β(x) truncated at four-loop order. This serves to demonstrate
that the renormalization group improved expression for R(s) given by eq. (71) has enhanced
predictive power over the purely perturbative result of eq. (73), as physical results should be
independent of the unphysical parameter µ2.

One can also employ the method of characteristics to recover the result of eq.(71) [17] by
following the techniques used in deriving eq. (54) when the relationship between gB and g
was discussed. In association with eq. (60) we define characteristic functions µ2(t) and x(t)
satisfying

d

dt
µ2(t) = µ2(t)

(
µ2(0) = µ2

)
(74)

d

dt
x(t) = β(x(t))

(
x(0) = x(µ2)

)
. (75)

It is apparent from eqs. (61) and (75) that x(µ2) and x(t), the running and characteristic
functions, satisfy the same equations. They are however distinct functions with the running
coupling serving as a boundary condition to the characteristic function.
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We begin by a rescaling
t → t/λ (76)

x → xλ (77)

where λ is a book keeping parameter, so that

λ
dµ(t)

dt
= µ2(t) (78)

λ2 dx(t)

dt
= −λ2x2(t)

∞∑

n=0

xn(t)λnβn (79)

and

S[x,L] = 1 +

∞∑

n=1

n−1∑

m=0

Tn,mλnxnL
m

(80)

where L ≡ ln
(
µ2/S

)
. Perturbatively expanding x(t)

x(t) =

∞∑

n=0

λnxn(t)
(
xn(0) = x(µ2)δn0

)
(81)

means that eq. (79) can be satisfied order-by-order in λ provided that

x0(t) = xw−1
(
x ≡ x(µ2), w ≡ 1 + β0x(µ2)t

)
(82)

x1(t) = −β1

β0

( x

w

)2
lnw (83)

x2(t) =
( x

w

)3
[(

β2
1

β2
0

− β2

β0

)
β0xt − β2

1

β2
0

lnw +
β2

1

β2
0

ln2 w

]
(84)

x3(t) =
( x

w

)4
[(−β3

1

2β3
0

+
β1β2

β2
0

− β3

2β0

)
w2 +

(
β3

1

β3
0

− β1β2

β2
0

)
w(1 − 2 ln w)

+

(
− β3

1

2β3
0

+
β3

2β0

)
+

(
2β3

1

β3
0

− 3β1β2

β2
0

)
lnw

+
5β3

1

2β3
0

ln2 w − β3
1

β3
0

ln3 w

]
. (85)

Together, eqs. (80) and (81) lead to

S[x(t), L(t)] = 1 + λ [T1,0x0] + λ2
[
T1,0x1 +

(
T2,0 + T2,1L

)
x2

0

]

+λ3
[
T1,0x2 +

(
T2,0 + T2,1L

)
(2x0x1)

+
(
T3,0 + T3,1L + T3,2L

2
)

x3
0

]

+λ4
[
T1,0x3 +

(
T2,0 + T2,1L

) (
x2

1 + 2x0x2

)
(86)

+
(
T3,0 + T3,1L + T3,2L

2
)

(3x0x1)

+
(
T4,0 + T4,1L + T4,2L

2
+ T4,3L

3
)

x4
0

]
+ . . .

As was shown in the discussion leading up to eq. (31), eq. (86) is independent of t, provided
one were to sum all contributions to S[x(t), L(t)]. This independence of t can be exploited by

8



writing t as t = λ ln k (so that by eq. (78) µ2(t) = kµ2) and then expanding eq. (86) in powers
of k; the resulting expression reduces to eq. (63) provided [17]

T2,1 = β0T1,0

T3,1 = 2T2,0β0 + β1T1,0

T3,2 = β2
0T1,0

T4,1 = 3β0T3,0 + 2β1T1,0 + β2T1,0 (87)

T4,2 = 3β2
0T2,0 +

5

2
β0β1T1,0

T4,3 = β3
0T1,0

etc. These relationships are precisely what one obtains if eqs. (62) and (63) were substituted
directly into eq. (60). Furthermore, eqs. (87) and (65) can be shown to lead to eqs. (67-70).

A more direct way of recovering eq. (71) is to choose t = λ ln
(

s
µ2

)
so that µ2 = s, L = 0

and w = w; taking λ = 1 results in eq. (86) when truncated at O
(
λ4
)

reducing to eq. (71).
This is much like what happened in eq. (44); in both cases a perturbative approximation to
the solution of a linear partial differential equation becomes an exact solution when evaluated
at the characteristic functions for a certain value of the characteristic parameter.

A number of other physical processes [19], among them the semi-leptonic decay rate of b
mesons, QCD contributions to vector and scalar correlation functions, the Higgs decay rate into
two gluons and the perturbative static potential, can also be analyzed using the renormalization
group. In each case, physical quantities when computed perturbatively, exhibit a dependence on
the renormalization µ2; this dependence is virtually eliminated when a kth order perturbative
calculation is improved by making use of the renormalization group equation to sum N kLL
contributions.
(IV) Renormalization group improvement can also be employed in thermal field theory calcu-
lations [21]. In QCD, if there are nf quark flavours, the thermodynamic free energy for T >> 0
is [22,23,24]

F =
−8π2

45
T 4

{(
1 +

21

32
nf

)
+

−15

4

(
1 +

5

12
nf

)
αs

π
+ 30

[(
1 +

nf

6

)(αs

π

)]3/2

+

{
237.2 + 15.97nf − .413n2

f +
135

2

(
1 +

nf

6

)
ln
[αs

π

(
1 +

nf

6

)]
(88)

−165

8

(
1 +

5

12
nf

)(
1 − 2

33
nf

)
ln

µ

2πT

}(αs

π

)2
+
(
1 +

nf

6

)1/2

[
−799.2 − 21.96nf − 1.926n2

f +
495

2

(
1 +

nf

6

)(
1 − 2

33
nf

)

ln
µ

2πT

](αs

π

)5/2
+ O

(
α3

s lnαs

)}

where µ2 is the MS renormalization scale, and x(µ2) = αs(µ2)
π satisfies the two-loop renormal-

ization group equation

µ2 dx(µ2)

dµ2
= b2x

2(µ2) + b3x
3(µ2). (89)

Changes in µ2 in eq. (88) (with corresponding changes in αs dictated by eq. (89)) lead to large
variations in F . To overcome this deficiency in the perturbative calculation of F , we look for a
solution to the renormalization group equation

(
µ2 ∂

∂µ2 + β(x)
∂

∂x

)(
F

F0

)
= 0 (90)
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that is of the form

F/F0 = 1 +
∞∑

n=0

(
Rn(ξ)xn+1 + Sn(ξ)xn+3/2 + Tn(ξ)xn+2 lnx

)
(91)

where F0 is the ideal-gas value of F , ξ = xL = x ln
(

µ2

(2πT )2

)
.

The general form of the functions Rn(ξ), Sn(ξ) and Tn(ξ) is

Rn(ξ) =

∞∑

m=0

An+m,mξn, Sn(ξ) =

∞∑

m=0

Bn+m,mξm, Tn(ξ) =

∞∑

m=0

Cn+m,mξm (92)

with the renormalization group equation (90) allowing us to determine An+m,m, Bn+m,m and
Cn+m,m (m > 0) in terms of An,0, Bn,0, Cn,0 and the β-function coefficients. From eqs. (89-91)
it follows that

0 =

∞∑

n=0

{[
R′

nxn+2 +
(
b2x

2 + . . .
) (

ξR′

n + (n + 1)Rn + xTn

)
xn
]

(93)

+

[
S′

nxn+5/2 +
(
b2x

2 + . . .
)(

ξS′

n +

(
n +

3

2

)
Sn

)
xn+1/2

]

+
[
T ′

nxn+3 +
(
b2x

2 + . . .
) (

ξT ′

n + (n + 2) Tn

)
xn+1 lnx

]}
.

It is possible to read off A0,0, A1,0, B0,0, B1,0 and T0,0 from eq. (88); these values combined
with the requirement that eq. (93) be satisfied at each order in x results in

R0(ξ) = A0,0 w−1, S0(ξ) = B0,0 w−3/2, T0(ξ) = C0,0 w−2 (94)

and

R1(ξ) = w−2

[
A1,0 −

(
b3

b2
A0,0 + C0,0

)
lnw

]
, S1(ξ) = w−5/2

[
B1,0 −

3

2

b3

b2
B0,0 lnw

]
(95)

where w = 1 + b2ξ. With these functions, the approximation to F/F0 is given by

F/F0 = 1 +

1∑

n=0

(
Rn(ξ)xn+1 + Sn(ξ)xn+3/2

)
+ T0(ξ)x

2 lnx (96)

is virtually independent of µ2 and has a value which coincides with the results of lattice calcu-
lations of this quantity. The effect of absorbing changes if µ2 by altering A0,0, B0,0 and C0,0

rather than having it simply change αs according to eq. (89) is considered in [21], although this
is contrary to the renormalization group approach.

The method of characteristics can also be used to arrive at this result [12]. As has been
done in previous examples, characteristic functions µ2(t) and x(t) are introduced

dµ2(t)

dt
= µ2(t)

(
µ2(0) = µ2

)
(97)

dx(t)

dt
= b2x

2(t) + b3x
3(t) + . . . (x(0) = x(µ2)) (98)

and then a rescaling
t → t/λ, x(t) → λx(t) (99)

is performed, followed by the perturbative expansion

x(t) =
∞∑

n=0

λnxn(t)
(
xn(0) = x(µ2)δn,0

)
. (100)
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Solving for xn(t) iteratively and then substitution of the results into the perturbative result

F/F0 = 1 +
(
A0,0x + A1,0x

2 + A1,1x
2L

+B0,0x
3/2 + B1,0x

5/2 + B1,1x
5/2L + C0,0x

2 lnx
)

(101)

(which is eq. (88)) reduces to what was obtained in eq. (96) when t = λ ln
(

(2πT )2

µ2

)
.

(V) When the renormalization group function β is known exactly, information can be extracted
about the effective action. This is the converse of the analysis of ref. [25] where computation of
the two-loop effective action in both scalar and spinor quantum electrodynmaics in the presence
of a self-dual background field strength was used to determine the two-loop β-function.

It has been shown that the effective action L and the β-function are related by the equation

L =
−1

4

g2

g2(t, g)
Φ (102)

where Φ is related to the constant background field strength F a
µν by

Φ = F a
µνF aµν (103)

and

t =
1

4
ln

(
g2Φ

µ4

)
(104)

=

∫ g(t,g)

g

dx

β(x)
. (105)

Eq. (102) follows from the trace anomaly condition

〈
θµ

µ

〉
=

β(g)

2g

(
g

g

)2

Φ (106)

and the definition of the expectation value of the energy-momentum tensor

〈θµν〉 = −gµνL + 2
δL

δgµν
. (107)

L in eq. (102) satisfies the renormalization group equation

(
µ

∂

∂µ
+ β(g)

∂

∂g
+ γ(g)F a

αβ

∂

∂F a
αβ

)
L = 0 (108)

provided
β(g) = −gγ(g). (109)

Eq. (109) follows from the fact that [26,27] gAa
µ is not renormalized in order to preserve gauge

invariance in the background field.
We note that from eqs. (104) and (105),

∂g(t, g)

∂t
= β(g(t, g)) =

∂g(t, g)

∂t
β(g) (110)

and
∂t

∂µ
= −1. (111)
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In the SU(3)N = 1 super Yang-Mills theory, the β-function in a supersymmetric renormal-
ization scheme is given by [28,29]

β(g) =
−9g3/(4π)2

1 − 6g2/(4π)2
. (112)

(It is not immediately apparent how this renormalization scheme is related to minimal subtrac-
tion [30].) If y = −(4π)2/6g2(t, g) and y = −(4π)2/6g2, then by eq. (105)

yey = e−3tyey, (113)

so that if W (η)eW (η) = η defines the Lambert W function [31], then eq. (102) becomes

L =
−1

4y
W

[(
g2Φ

µ4

)−3/4

yey

]
Φ. (114)

If we consider an SU(3) N = 2 super Yang-Mills theory, then the β-function is an entirely
one-loop quantity,

β(g) = − 6

(4π)2
g3; (115)

with this it follows from eqs. (102)and (105) that

L =
−1

4

[
1 +

3g2

(4π)2
ln

(
g2Φ

µ4

)]
Φ. (116)

(VI) Instanton contributions to the effective action will now be examined; renormalization
group considerations again show how a purely perturbative calculation can be improved. The
one instanton contribution to the effective action in an SU(2) gauge theory with nf flavours is
of the form [32]

Leff = K

∫
dρ ρ−5+3nf exp

{−8π2

g2(µ)
S

}
(117)

where S is a power series

S = 1 +

∞∑

n=1

n∑

m=0

Tn,mg2n(µ) lnm(µρ). (118)

The integral over ρ, the “size” of the instanton, converges in the ultraviolet limit (ρ → 0) but
diverges in the infrared limit (ρ → ∞) when the one-loop contributions T1,0 and T1,1 computed
in [32] are included.

Resumming the two series in eq. (118) [18] so that

S =

∞∑

k=0

g2k(µ)

(
∞∑

`=k

T`,`−k

(
g2(µ) ln(µρ)

)`−k

)

≡
∞∑

k=0

g2k(µ)Sk

(
g2(µ) ln(µρ)

)
(119)

and applying the renormalization group equation
(

µ
∂

∂µ
+ β(g)

∂

∂g

)
S = 0 (120)

with the β-function being given by

β(g) =

∞∑

`=1

b2`+1g
2`+1 (121)
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we find that
S0 = 1 + 2b3g

2(µ) ln(µρ) ≡ w (122)

and for k > 1

dSk

dw
+

k − 1

w
Sk =

−1

2b3w

[
k−1∑

`=0

b3+2(k−`)

(
2(` − 1)S` + 2(w − 1)

dS`

dw

)]
(123)

with Sk(w = 1) = Tk,0. From eq. (123) it follows that

S1 = T1,0 +
b5

b3
ln |w| (124)

S2 =

(
b7

b3
− b2

5

b2
3

)
+

T2,0 −
(

b7
b3

− b2
5

b2
3

)
+

b2
5

b2
3

ln |w|
w

. (125)

In general, from eq. (123) it follows that for k ≥ 2,

Sk(w) = Ck + O

(
1

w

)
(126)

where Ck is dependent only on the β-function coefficients. Consequently, by eq. (119),

ρ−5+3nf exp

(−8π2

g2
S

)
−→

(ln ρ→∞) ρ
7

3 (1+nf)| ln ρ|−8π2b5/b3 . (127)

We consequently see that even upon including the contribution of all terms in eq. (119) to S,
the integral over ρ still suffers from an infrared divergence as ρ → ∞.
(VII) It is also possible to use the renormalization group to improve a perturbative calculation
of the effective potential [33-37]. This procedure has been applied in both scalar electrodynamics
and the standard model at leading-log order [38-39] and beyond [40]. We will illustrate this
procedure by considering leading-log corrections to the one-loop calculation of the effective
potential in massless scalar electrodynamics.

In this model, the classical Lagrangian is given by

L =
1

2
(∂µφ1 − eAµφ2)

2 +
1

2
(∂µφ2 + eAµφ1)

2 − λ

4!

(
φ2

1 + φ2
2

)2
. (128)

One-loop corrections to V = λ
4!

(
φ2

1 + φ2
2

)2 ≡ λφ4

4! in the Landau gauge result in [33]

V = φ4

[
λ

4!
+

(
5λ2

1152π2
+

3e4

64π2

)(
ln

φ2

µ2
+ k

)
+ O(λ3, e6)

]
(129)

where k is a constant whose value is fixed by a renormalization condition. If we chose this
condition to be

d4V

dφ4
= λ (130)

when φ2 = µ2, then

k = −25

6
. (131)

If now < φ > is the vacuum expectation value of φ, then upon choosing µ2 =< φ >2, it follows
from eq. (129) that if

dV

dφ

∣∣∣∣
<φ>

= 0 (132)
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then at the scale µ2 =< φ >2

λ =
33e4

8π2
(133)

so that eq. (129) becomes

V =
3e4

64π2
φ4

[
ln

(
φ2

< φ >2

)
− 1

2

]
+ O(e6). (134)

Upon identifying thescalar and vector masses with

m2
φ = V ′′(φ =< φ >) m2

A = e2 < φ >2 (135)

respectively, we find from eq. (134) that [33]

m2
φ

m2
A

=
3e2

8π2
(136)

where in eq. (136) (as in eq. (134)) e2 is evaluated at µ2 =< φ >2.
The general form of the effective potential is

V =
π2φ4

6
S(λ, e2, L) (137)

where L = ln
(

φ2

µ2

)
. The renormalization group equation µ dV

dµ = 0 then gives rise to the

equation [
(−2 + 2γ)

∂

∂L
+ βe

∂

∂e2
+ βλ

∂

∂λ
+ 4γ

]
S = 0 (138)

with at one-loop order [33]

γ =
3e2

16π2
, (139)

βe =
e4

24π2
, (140)

βλ =
5λ2

24π2
− 3λe2

4π2
+

9e4

4π2
. (141)

S in eq. (137) can now be expressed as a power series in λ, e2 and L with the leading-log
contribution (which is fixed entirely by the one-loop calculation) being given by those terms in
which the power L is raised to being one less than the sum of the powers to which e2 and λ are
raised. If x = 4π2e2, y = 4π2λ the Leading-Log contribution to S is of the form

SLL =

∞∑

n=0

(
Rn,n−1y

nLn−1 +

∞∑

k=0

Tn,kx
nykLn+k−1

)
(142)

Eq. (138) now becomes

[
−2

∂

∂L
+

(
5

6
y2 − 3xy + 9x2

)
∂

∂y
+

x2

6

∂

∂x
+ 3x

]
SLL(x, y, L) = 0. (143)

Together, eqs. (142) and (143) are satisfied at order,

ypLp−1 if − 2(p − 1)Rp,p−1 +
5

6
(p − 1)Rp−1,p−2 = 0; (144)

xypL if − 2pT1,p +
5

6
(p − 1)T1,p−1 − 3(p − 1)Rp,p−1 = 0; (p ≥ 1) (145)

14



x2ypLp if − 2(p + 1)T2,p +
5

6
(p − 1)T2,p−1 − 3pT1,p

+9(p + 1)Rp+1,p +
19

6
T1,p = 0 (p ≥ 1) (146)

xnypLn+p−2 if − 2(p + n − 1) +
5

6
(p − 1)Tn,p−1 − 3pTn−1,p

+9(p + 1)Tn−2,p+1 +
n + 17

6
Tn−1,p = 0 (n ≥ 3, p ≥ 1) (147)

and

−2(n − 1)Tn,0 + 9Tn−2,1 +
n + 17

6
Tn−1,0 = 0 (n ≥ 3). (148)

From eq. (129), we have the values of T0,1, R1,0, T2,0, T0,2 as well as T1,1 = 0. These values are
consistent with eqs. (144-148), and furthermore, if

S0(yL) =
∞∑

n=1

Rn,n−1(yL)n−1, (149)

Sj(yL) =
∞∑

n=0

Tj,n(yL)n (150)

we find that these recursion relations serve to fix the functions Sn(yL). It can be shown that
in particular

S0(yL) =
1

1 − 5
12yL

≡ 1

w
(151)

S1(w) = −9

5

(
w − 1

w

)2

(152)

S2(w) =
1

20w3

(
20w3 + 77w2 − 34w + 27

)
(153)

and

S3(w) =
1

240w4

(
580w4 + 760w3 − 323w2 + 126w − 243

)
. (154)

With

V LL =
π2φ4

6

[
yS0(yL) +

∞∑

n=1

xnLn−1Sn(yL)

]
+ Kφ4 (155)

the condition of eq. (130) leads to

6K

π2
= −

(
125

72
y2 +

75

4
x2

)
−
(

2625y3 + 1875y4 + 625y5

1296

)
(156)

+
x
(
175y2 + 250y3 + 125y4

)

48

−x2
(
9450y + 10275y2 + 5275y3

)

432
,

upon including S1 and S2 in the sum of eq. (155). (At lowest order, this is consistent with eq.
(131).) If at µ2 =< φ >2, where L = 0, the condition of eq. (132) leads to a generalization of
eq. (133)

0 =

[(
1296y − 1980y2 − 2625y3 − 1875y4 − 625y5

1944

)
(157)
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+x

(
175y2 + 250y3 + 125y4

72

)

−x2

(
7128 + 9450y + 10275y2 + 5275y3

648

)]
.

This defines a relationship between x and y when these running couplings are evaluated at
µ2 =< φ >2. As eq. (157) is quadratic in x, there are two values of y for each value of x, one
large and the other small. If y ≤ .01, then eq. (157) reduces to eq. (133).

We also find that if we use the potential of eq. (155) (with only S1 and S2 included) and K
given by eq. (156), then the analogue of eq. (136) is

m2
φ

m2
A

=

(
y

2x
− 27x

4

)
− 1

2592x

[
1620y2 + 2475y3 + 1875y4

+625y5 − x
(
4455y2 + 6750y3 + 3375y4

)
(158)

+x2
(
26730y + 30825y2 + 15825y3

)]
.

In the region in which eq. (157) reduces to eq. (133), eq. (158) reduces to eq. (136).
The analysis that has just been used to examine the effective potential in massless scalar

electrodynamics can also be applied in the standard model [38-39]. The dominant couplings
that must be included are the top quark Yukawa coupling, the quartic scalar coupling and the
strong gauge coupling; the effects of the SU(2) × U(1) gauge couplings are treated as being
secondary. If the tree level mass of the scalar is taken to vanish, then upon including leading log
contributions to the effective potential and using experimental values for the top quark Yukawa
coupling and the strong gauge coupling, it is possible to show that the Higgs scalar would have
a mass of about 216 GeV. Furthermore, the value of the quartic scalar coupling is considerably
enhanced, leading to an increase in the scattering cross section σ(W +

L W−

L → Z0
LZ0

L) by a factor
of about 30 over conventional expectations. These results are quite stable when the accessible
higher order effects are included [40].
(VIII) We now turn to an exact solution of the renormalization group equation, focusing on
a massless λφ4

4 theory first of all, then considering the effect of including a mass for this scalar
field.

The renormalization group equation for the effective potential V in this model is [33,15,16,41-
43]

µ
dV (µ, λ, φ)

dµ
=

(
µ

∂

∂µ
+ β(λ)

∂

∂λ
+ γ(λ)φ

∂

∂φ

)
V (µ, λ, φ) = 0, (159)

where λ = λ(µ) and φ = φ(µ) satisfy

µ
dλ

dµ
= β(λ) (160)

and

µ
dφ

dµ
= γ(λ)φ. (161)

Upon taking
V (µ, λ, φ) = Y (λ,L)φ4 (162)

where L ≡ ln
(

λφ
µ

)
, eq. (159) becomes

[
∂

∂L
− β̃(λ)

∂

∂λ
− 4γ̃(λ)

]
Y (λ,L) − 0 (163)

where
β̃ = β/(1 − γ − β/2λ), γ̃ = γ/(1 − γ − β/2λ). (164)
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(The factor of λ in the argument of L arises if one uses dimensional regularization [43].) An
auxiliary function λ(L, λ) is defined by

L =

∫ λ(L,λ)

λ

dx

β̃(x)
(165)

satisfies
λ(L = 0, λ) = λ (166)

∂λ(L, λ)

∂L
= β̃(λ(L, λ)) (167)

∂λ(L, λ)

∂λ
=

−β̃(λ(L, λ))

β̃(λ)
. (168)

Often, eq. (163) is taken to imply [33,5,10,44]

Y (λ,L) = f(λ(L, λ)) exp

[
4

∫ L

0
γ̃(λ(x, λ))dx

]
; (169)

however, substitution of eq. (169) into the left side of eq. (163) results in

I =

{
f ′(λ(L, λ))

[
∂λ(L, λ)

∂L
− β̃(λ)

∂λ(L, λ)

∂λ

]
(170)

+f(λ(L, λ))
[
4γ̃(λ(L, λ)) − 4γ̃(λ)

+4

∫ L

0

∂γ̃(λ(x, λ))

∂λ
dx

]}
exp

[
4

∫ L

0
γ̃(λ(x,L)))dx

]

which only vanishes if L = 0 (where eq. (163) is satisfied by eq. (169) because of eqs. (166-168)).
There is, however, a way of obtaining a formal solution to eq. (163) [12]. If

Y (λ,L) =
∞∑

m=1

m−1∑

n=0

amnλmLn (171)

≡
∞∑

m=0

Am(λ)Lm

then from eq. (163) we find that

An+1(λ) =
1

2(n + 1)

[
β̃(λ)

∂

∂λ
+ 4γ̃(λ)

]
An(λ). (172)

If now

An(λ) = exp

[
−4

∫ λ

λ0

dx
γ̃(x)

β̃(x)

]
Ãn(λ) (173)

and

η(λ) = 2

∫ λ

λ0

dx

β̃(x)
(174)

then eq. (172) becomes

Ãn+1(η) =
1

n + 1

∂

∂η
Ãn(η). (175)

As a result of eqs. (171-175) we find that

Y (λ,L) = exp

[
−4

∫ λ

λ0

dx
γ̃(x)

β̃(x)

] ∞∑

n=0

Ãn(λ)Ln
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= exp

[
−4

∫ λ

λ0

dx
γ̃(x)

β̃(x)

] ∞∑

n=0

Ln

n!

(
d

dη

)n

Ã0(λ(η))

= exp

[
−4

∫ λ

λ0

dx
γ̃(x)

β̃(x)

]
Ã0(λ(η + L))

= exp

[
−4

∫ λ

λ(η+L)
dx

γ̃(x)

β̃(x)

]
A0(λ(η + L)). (176)

Eqs. (169) and (176) are distinct.
We have succeeded in expressing the effective potential in terms of the function A0; we can

now find A0 itself by imposing a second condition on the effective potential. This condition is
provided by eq. (132). Together, eqs. (132) and (171) lead to

∞∑

n=0

(4An(λ(µ)) + 2(n + 1)An+1(λ(µ)))

(
ln

λ < φ >2

µ2

)n

< φ >3= 0. (177)

When dealing with massless scalar electrodynamics, the analogue of this result at one-loop order
leads to eq. (133) [33] which serves to relate the value of the quartic scalar coupling to the
gauge coupling; this is extended to the leading log effective potential in eq. (157) above [38-39].
In the purely scalar λφ4

4 model, the one-loop effective potential gives an inconsistent result [33].
A different interpretation of eq. (132) [45] is to take it to define a relationship between the
function A0

(
λ
(
µ2 = λ(µ2) < φ >2

))
and A1

(
λ
(
µ2 = λ(µ2) < φ >2

))
, as if µ2 = λ(µ2) < φ >2

is the value chosen for µ2, then all terms in the sum appearing in eq. (177) vanish except for
the n = 0 term. We take the resulting equation

A1

(
λ
(
µ2
))

= −2A0

(
λ
(
µ2
))

(178)

to hold for all µ2 as the actual value of λ(µ2), for any value of µ2, is contingent upon the
boundary condition imposed on the equation for running coupling and is hence arbitrary.

Together, eqs. (172) with n = 0 and (178) imply that

A′

0(λ) +

(
4

β(λ)
− 2

λ

)
A0(λ) = 0 (179)

and so

A0(λ) = K exp

[
−
∫ λ

λ0

(
4

β(x)
− 2

x

)
dx

]
(180)

= K ′λ(2+4b3/b22) exp

(
4

b2λ

)
exp

{
−
∫ λ

0

[
4

β(x)
− 4

(
1

b2x2
− b3

b2
2x

)]
dx

}
. (181)

(Here K = A0(λ0) is a boundary value; the divergence appearing in eq. (180) as λ0 → 0 is
absorbed into K ′ in eq. (181) with β(λ) = b2λ

2 + b3λ
3 + . . . .)

Substitution of eq. (180) into eq. (176) leads to

V = A0(λ) exp

(∫ λ(η+L)

λ

(
4γ(x) − 4 + 2β(x)/x

β(x)

)
dx

)
φ4. (182)

By eqs. (164) and (174), eq. (182) collapses to

V = A0(λ) exp−2 [η (λ(η + L)) − η] φ4

= A0(λ) exp(−2L)φ4 =
A0(λ)µ4

λ2
. (183)
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This result is independent of φ (and is hence “trivial” [46]) and has non-analytic dependence
on λ, but still satisfies eq. (159). Eq. (183) can also be shown to follow if one were to use

counterterm renormalization so that L appearing in eq. (161) is given by L = ln
(

φ2

µ2

)
without

any dependence on λ.
It appears that the only way to escape the conclusion that V is independent of φ is to have

eq. (177) satisfied not by eq. (178), but rather < φ >= 0, in which case it is not possible to
determine the function A0, but there is no radiatively driven breaking to the symmetry φ → −φ
in the original Lagrange density.

An alternate way of arriving at eq. (183) is to have eq. (177) satisfied order by order in

ln
(

λ<φ>2

µ2

)
, so that

An+1(λ(µ)) =
−2

(n + 1)
An(λ(µ)). (184)

Together, eqs. (163) and (183) show that

An(λ) = Kn exp

[
−
∫ λ

λ0

(
4

β(x)
− 2

x

)
dx

]
(185)

with Kn+1 = −2Kn/(n + 1), with

An(λ) =
(−2)n

n!
A0(λ) (186)

so that eq. (171) becomes

Y (λ,L) =

∞∑

n=0

(−2)n

n!
LnA0(λ), (187)

reproducing eq. (183).
The Lagrange density of massless scalar electrodynamics, given by eq. (128), is characterized

by the two couplings λ and e2, so the effective potential now takes the form

V (λ, e2, φ, µ) =

∞∑

n=0

An(λ, e2)Lnφ4 (188)

where again L = ln
(

λφ2

µ2

)
. Substitution of eq. (188) into the renormalization group equation

[
µ

∂

∂µ
+ βλ(λ, e2)

∂

∂λ
+ βe2(λ, e2)

∂

∂e2
+ γ(λ, e2)φ

∂

∂φ

]
V = 0 (189)

gives rise to an analogue of eq. (171)

An+1 =
1

2(n + 1)

(
β̃λ

∂

∂λ
+ β̃e2

∂

∂e2
+ 4γ̃

)
An (190)

where

β̃λ =
βλ

1 − γ − βλ/2λ
, β̃e2 =

βe2

1 − γ − βλ/2λ
, γ̃ =

γ

1 − γ − βλ/2λ
. (191)

Furthermore, if as in eq. (132),

d

dφ
V (λ, e2, φ =< φ >,µ) = 0 (192)

then, much as we obtained eq. (177), we find that

∞∑

n=0

[
4An(λ, e2) + 2(n + 1)An+1(λ, e2)

](
ln

λ < φ >2

µ2

)n

< φ >3= 0. (193)
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If this is to be satisfied order by order in ln
(

λ<φ>2

µ2

)
when < φ >6= 0, then we see that

An+1(λ, e2) = − 2

n + 1
An(λ, e2), (194)

so that a generalization of eq. (183) follows

V =
A0(λ, e2)µ4

λ2
. (195)

An argument presented in ref. [45] also can be used to establish eq. (195) using only the
n = 0 contribution to eq. (194) with the renormalization group equation of eq. (190).

So also, the massless λφ6
3 model can be shown by using the techniques which have led to

eq. (183) to have an effective potential which is independent of the background field φ and to
have a non-analytic dependence on λ unless the vacuum expectation value < φ > vanishes.

Finally we shall apply [47] the renormalization group to examine a massive λφ4
4 model in

which the Lagrange density is

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − 1

4!
λφ4. (196)

The effective potential V for this model has also been considered by [41-42]. In ref. [41] it was
noted that the general form of V is

V =

{(
a +

b

x

)
+

∞∑

`=1

λ`+1
`−1∑

m=0

xm−2
∑̀

n=0

yna`mn (197)

+

(
1 − x

x

)2 ∞∑

k=1

bkλ
k

}
φ4.

where a = −5
24 , b = 1

4 and

x =
1

1 + 2m2

λφ2

, y = ln

(
λφ2

2µ2

1

x

)
= ln

(
m2 + λφ2

2

µ2

)
. (198)

This motivates making an expansion in line with those of eqs. (171) and (188) [47],

V (λ, x, y, µ, φ) =

∞∑

n=0

An(λ, x)ynφ4. (199)

Substitution of eq. (199) into the renormalization group equation

(
µ2 ∂

∂µ2
+ β(λ)

∂

∂λ
+ γm(λ)m2 ∂

∂m2
+ γφ(λ)φ2 ∂

∂φ2

)
V = 0 (200)

results in

An+1(λ, x) =
1

n + 1

[
f(λ, x)

∂

∂x
+ g(λ, x)

∂

∂λ
+ h(λ, x)

]
An(λ, x) (201)

where

f(λ, x) =

(
β

λ
− γm + γφ

)
x(1 − x)/D(λ, x)

g(λ, x) = β/D(λ, x)

h(λ, x) = 2γφ/D(λ, x)

20



(D(λ, x) = 1 −
(

β
λ + γφ

)
x − γm(1 − x)) if the renormalization group equation is satisfied at

each order in y.
Furthermore, since

dV

dφ2
=

∞∑

n=0

[(
x(1 − x)

∂An

∂x
+ 2An

)
yn + nxAnyn−1

]
φ2 (202)

V has an extremum at φ =< φ > if at each order in y

An+1(λ, x0) =
1

n + 1

[
−2

x
− (1 − x)

∂

∂x

]
An(λ, x0) (203)

provided < φ >6= 0 (x0 =
(
1 + 2m2

λ<φ>2

)
−1

). Taking eq. (203) to hold for all x, then it together

with eq. (199) results in

V =
∞∑

n=0

yn

n!

[
−2

x
− (1 − x)

∂

∂x

]n

A0(λ, x)φ4. (204)

Upon setting

z = ln

(
m2

µ2

)
− y = ln(1 − x) (205)

and

B0(λ, z) = exp

(
−2

∫ z

z0

dt

1 − et

)
A0(λ, x) (206)

eq. (204) becomes

V = exp

(
2

∫ z

z0

dt

1 − et

) ∞∑

n=0

yn

n!

(
∂

∂z

)n

B0(λ, z)φ4

= exp

(
−2

∫ z+y

z

dt

1 − et

)
A0(λ, z + y)φ4. (207)

By eq. (205), eq. (207) collapses down to an expression for V which is independent of φ, much
like eqs. (183) and (195),

V =
4(m2 − µ2)2

λ2
A0

(
λ, ln

m2

µ2

)
. (208)

The function A0(λ, x) satisfies an equation that follows from eqs. (201) and (203) when n = 0,

(
−2

x
− (1 − x)

∂

∂x

)
A0(λ, x) =

(
f(λ, x)

∂

∂x
+ g(λ, x)

∂

∂λ
+ h(λ, x)

)
A0(λ, x). (209)

There is an alternate way of deriving eq. (208) that does not require that eq. (202) holds
order by order in y when φ =< φ >. This involves setting µ2 equal to a value µ2

0 so that y = 0,
λ = λ0 and x = x0; in this case only the y0 contribution to eq. (202) survives,

A1(λ0, x0) =

(
−2

x
− (1 − x)

∂

∂x

)
A0(λ0, x0). (210)

As the actual value of λ0 is contingent upon the unspecified value of the boundary condition
on the equation for this running coupling constant, eq. (210) can be taken to be a functional
relation between A0(λ, x) and A1(λ, x).
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We now follow an approach modeled on the method of characteristics. First we define

an(λ(t), x(t), t) = exp

(∫ t

t0

dτ h(λ(τ), x(τ))

)
An(λ(t), x(t)) (211)

where
dx(t)

dt
= f

(
λ(t), x(t)

)
(x(t0) = x) (212)

dλ(t)

dt
= g

(
λ(t), x(t)

) (
λ(t0) = λ

)
. (213)

Eqs. (201), (211-213) together lead to

d

dt
an

(
λ(t), x(t), t

)
= (n + 1)an+1

(
λ(t), x(t), t

)
(214)

Upon taking

y(t) = ln

(
λ(t)φ

2
(t)

2µ2(t)

1

x(t)

)
(215)

where
d ln φ

2
(t)

dt
= γφ

(
λ(t)

)
/D
(
λ(t), x(t)

)
(216)

d lnµ2(t)

dt
= 1/D

(
λ(t), x(t)

)
(217)

(
φ

2
(t0) = φ2, µ2(t0) = µ2

)

then by eqs. (212, 213, 216, 217) we see that

dy(t)

dt
= −1 (y(t0) = y) (218)

so that

V =

∞∑

n=0

an

(
λ(t), x(t), t

)
yn(t)φ4 (219)

satisfies
dV (t)

dt
= 0 (V (t0) = V (λ, x, y, µ, φ)) . (220)

Eqs. (214) and (219) now lead to

V (t) =
∞∑

n=0

yn(t)

n!

(
d

dt

)n

a0

(
λ(t), x(t), t

)
φ4

= a0

((
λ(t + y(t)

)
, x (t + y(t)) , t + y(t)

)
φ4. (221)

We now define

Ã0

(
λ(t), x(t), t

)
=

[
exp

∫ t

t0

(
2

x(τ)
+ h(λ(τ), x(τ))

)
dτ

]

A0

(
λ(t), x(t)

)
(222)

which by eqs. (211-213) shows that

Ã0

(
λ(t0), x(t0), t0

)
= A0(λ, x) = a0

(
λ(t0), x(t0), t0

)
(223)
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while eqs. (209, 212, 213) ensure that

d

dt
Ã0

(
λ(t), x(t), t

)
= −(1 − x(t))

∂

∂x(t)
Ã0

(
λ(t), x(t), t

)
. (224)

The definitions of eqs. (211) and (222) allow us to rewrite eq. (220) as

V (t) =
∞∑

n=0

yn(t)

n!

(
d

dt

)n{[
exp−

∫ t

t0

2dτ

x(τ)

]
Ã0

(
λ(t), x(t), t

)}
φ4 (225)

which by eq. (224) becomes

=

[
exp−

∫ t

t0

2dτ

x(τ)

] ∞∑

n=0

yn(t)

n!

[ −2

x(t)
− (1 − x(t))

∂

∂x(t)

]n

Ã0

(
λ(t), x(t), t

)
φ4 (226)

Just as eq. (204) led to eq. (207), eq. (226) becomes

V (t) =

[
exp−

∫ t

t0

2dτ

x(τ)

]
exp

(
−2

∫ z(t)+y(t)

z(t)

dτ

1 − eτ

)
Ã0

(
λ(t), z(t) + y(t), t

)
φ4. (227)

In eq. (227) we can set t = t0; eq. (220) ensures that eq. (208) is recovered.
(IX) It has been demonstrated in this review that the renormalization group is an effective tool
for obtaining information about quantum processes beyond what is learned from purely pertur-
bative calculations carried out to finite order. Further applications, such as an examination of
the effective potential in massive scalar electrodynamics, are currently being considered.
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