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Abstract

The new exact formulas for the attractive Casimir force acting on each of the two per-
fectly conducting plates moving freely inside an infinite perfectly conducting cylinder with
the same cross section are derived at zero and finite temperatures by making use of zeta
function technique. The short and long distance behaviour of the plates’ free energy is
investigated.

1 Introduction

Recently a new geometry in the Casimir effect[1], a piston geometry, has been introduced in a
2D Dirichlet model [2]. Generally the piston is located in a semi-infinite cylinder closed at its
head. The piston is perpendicular to the walls of the cylinder and can move freely inside it. The
cross sections of the piston and cylinder coincide. Physically this means that the approximation
is valid when the distance between the piston and the walls of a cylinder is small in comparison
with the piston size.

In paper [3] a perfectly conducting square piston at zero temperature was investigated in
3D model in the electromagnetic and scalar case. The exact formula (Eq.(6) in [3]) for the force
on a piston was written in the electromagnetic case. Also the limit of short distances was found
for arbitrary cross sections (Eq.(7) in [3]). This result was generalized in [4]. In paper [4] the
exact formula for the free energy of two perfectly conducting plates of an arbitrary cross section
inside the waveguide (or infinite cylinder) with the same cross section was written (Eq.(118) in
[4] or (30) here). In the zero temperature case and square cross section of the waveguide our
general result for the force (35) coincides with Eq.(6) in [3]. It is interesting that our result
resembles the result for the interquark potential in a rigid string model [5] .

A dilute circular piston and cylinder were studied perturbatively in [6]. In this case the
force on two plates inside a waveguide and the force in a piston geometry differ essentially. The
force in a piston geometry can even change sign in this approximation for thin enough walls of
the material. Other examples of repulsive pistons were presented in [7].

In Sec.2 we derive the new exact result (30) for the free energy of two parallel plates inside
an infinite cylinder by making use of the zeta function technique [8, 9]. We consider a perfectly
conducting case, the plates move freely inside the cylinder with the same cross section, which is
arbitrary. The plates are perpendicular to the walls of the cylinder. In Sec.3 we apply the heat
kernel technique [10, 11, 4] to derive the leading short distance behaviour of the free energy.
In the short distance limit we prove that there are no temperature corrections to the leading
terms obtained in [3] (Eq.(7) in [3]). The long distance limit result (40) (the high temperature
limit result) is new.

We take ~ = c = 1.
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2 Derivation

Our aim is to calculate the Casimir energy of interaction and the force between the two parallel
plates of an arbitrary cross section inside an infinite cylinder of the same cross section (the
plates are perpendicular to the walls of the cylinder).

TE and TM eigenfrequencies of the perfectly conducting cylindrical resonator with an
arbitrary cross section can be written as follows. For TE modes (Ez = 0) inside the perfectly
conducting cylindrical resonator of the length a with an arbitrary cross section the magnetic
field Bz(x, y, z) and eigenfrequencies ωTE are determined by:

Bz(x, y, z) =
+∞
∑

i=1,n=1

Bin sin
(πnz

a

)

gi(x, y), (1)

∆(2)gi(x, y) = −λ2
iNgi(x, y) (2)

∂gi(x, y)

∂n

∣

∣

∣

∂M
= 0 (3)

ω2
TE =

(πn

a

)2
+ λ2

iN , n = 1.. + ∞, i = 1.. + ∞. (4)

The other components of the magnetic and electric fields can be expressed via Bz(x, y, z).
For the TM modes (Bz = 0) inside the perfectly conducting cylindrical resonator of the

length a with an arbitrary cross section the electric field Ez(x, y, z) and eigenfrequencies ωTM

are determined by:

Ez(x, y, z) =
+∞
∑

n=0,k=1

Ekn cos
(πnz

a

)

fk(x, y), (5)

∆(2)fk(x, y) = −λ2
kDfk(x, y) (6)

fk(x, y)|∂M = 0 (7)

ω2
TM =

(πn

a

)2
+ λ2

kD, n = 0.. + ∞, k = 1.. + ∞ (8)

In ζ-function regularization scheme the Casimir energy is defined as follows:

E =
1

2

(

∑

ω1−s
TE +

∑

ω1−s
TM

)
∣

∣

∣

s=0
, (9)

where the sum has to be calculated for large positive values of s and after that an analytical
continuation to the value s = 0 is performed.

Alternatively one can define the Casimir energy via a zero temperature one loop effective
action W (T1 is a time interval here):

W = −ET1 (10)

E = −ζ ′(0) (11)

ζ(s) =
1

Γ( s
2 )

∫ +∞

0
dt t

s
2
−1

∑

ωTE ,ωTM

∫ +∞

−∞

dp

2π
exp

(

−t
(a

π

)2(

ω2 + p2
)

)

(12)

After integration over p in (12) one can see that definitions (9) and (11) coincide.
In every Casimir sum it is convenient to write:

+∞
∑

n=1

exp(−tn2) =
1

2

+∞
∑

n=−∞

exp(−tn2) − 1

2
=

1

2
θ3

(

0,
t

π

)

− 1

2
. (13)
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For the first term on the right-hand side of (13) we use the property of the theta function
θ3(0, x):

θ3(0, x) =
1√
x

θ3

(

0,
1

x

)

(14)

and the value of the integral
∫ +∞

0
dt tα−1 exp

(

−p t − q

t

)

= 2
(q

p

)
α
2

Kα(2
√

pq) (15)

for nonzero values of n to rewrite the Neumann zeta function ζN (s) (arising from TE modes)
in the form:

ζN (s) =
∑

λiN

∫ +∞

−∞

dp

2π

[
√

π Γ
(

(s − 1)/2
)

2 Γ(s/2)

(a
√

λ2
iN + p2

π

)1−s
+

+

+∞
∑

n=1

2
√

π

Γ(s/2)

( π2n

a
√

λ2
iN + p2

)
s−1

2

K s−1

2

(

2an
√

λ2
iN + p2

)

]

−

−
∑

λiN

√
π Γ

(

(s − 1)/2
)

4aΓ(s/2)

(aλiN

π

)1−s
(16)

The Neumann part of the Casimir energy is given by:

EN = −ζ ′N(0) =
∑

λiN

∫ +∞

−∞

dp

2π

1

2
ln

(

1 − exp(−2a
√

λ2
iN + p2)

)

+

+
a

2

∑

λiN

∫ +∞

−∞

dp

2π

(

λ2
iN + p2

)
1−s
2

∣

∣

∣

∣

s=0

− 1

4

∑

λiN

λ1−s
iN

∣

∣

∣

∣

s=0

. (17)

Here we used K−1/2(x) =
√

π/(2x) exp(−x).
The Dirichlet part of the Casimir energy (from TM modes) is obtained by analogy:

ED =
∑

λkD

∫ +∞

−∞

dp

2π

1

2
ln

(

1 − exp(−2a
√

λ2
kD + p2)

)

+

+
a

2

∑

λkD

∫ +∞

−∞

dp

2π

(

λ2
kD + p2

)
1−s
2

∣

∣

∣

∣

s=0

+
1

4

∑

λkD

λ1−s
kD

∣

∣

∣

∣

s=0

. (18)

The electromagnetic Casimir energy of a perfectly conducting resonator of the length a and
an arbitrary cross section is given by the sum of (17) and (18) :

E =
∑

λiN

∫ +∞

−∞

dp

2π

1

2
ln

(

1 − exp(−2a
√

λ2
iN + p2)

)

+ (19)

+
∑

λkD

∫ +∞

−∞

dp

2π

1

2
ln

(

1 − exp(−2a
√

λ2
kD + p2)

)

+ (20)

+
a

2

∑

λiN

∫ +∞

−∞

dp

2π

(

λ2
iN + p2

)
1−s
2

∣

∣

∣

∣

s=0

+ (21)

+
a

2

∑

λkD

∫ +∞

−∞

dp

2π

(

λ2
kD + p2

)
1−s
2

∣

∣

∣

∣

s=0

+ (22)

+
1

4

∑

λkD

λ1−s
kD

∣

∣

∣

∣

s=0

− 1

4

∑

λiN

λ1−s
iN

∣

∣

∣

∣

s=0

. (23)
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The terms

Ewaveguide =
1

2

∑

λiN

∫ +∞

−∞

dp

2π

(

λ2
iN + p2

)
1−s
2

∣

∣

∣

∣

s=0

+ (24)

+
1

2

∑

λkD

∫ +∞

−∞

dp

2π

(

λ2
kD + p2

)
1−s
2

∣

∣

∣

∣

s=0

(25)

yield the electromagnetic Casimir energy for a unit length of a perfectly conducting infinite
cylinder with the same cross section as the resonator under consideration.

For the experimental check of the Casimir energy for the rectangular cavity one should
measure the force somehow. We think about the following possibility: one should insert two
parallel perfectly conducting plates inside an infinite perfectly conducting cylinder and measure
the force acting on one of the plates as it is being moved through the cylinder. The distance
between the inserted plates is a.

To calculate the force on each plate the following gedanken experiment is useful. Imagine
that 4 parallel plates are inserted inside an infinite cylinder and then 2 exterior plates are
moved to spatial infinity. This situation is exactly equivalent to 3 perfectly conducting cavities
touching each other. From the energy of this system one has to subtract the Casimir energy
of an infinite cylinder, only then do we obtain the energy of interaction between the interior
parallel plates, the one that can be measured in the proposed experiment. Doing so we obtain
the attractive force on each interior plate inside the cylinder:

F (a) = −∂Earb(a)

∂a
, (26)

Earb(a) =
∑

ωwave

1

2
ln(1 − exp(−2aωwave)), (27)

the sum here is over all TE and TM eigenfrequencies ωwave for the cylinder with an arbitrary
cross section and an infinite length. Thus it can be said that the exchange of photons with the
eigenfrequencies of an infinite cylinder between the inserted plates always yields the attractive
force between the plates.

For rectangular boxes it was generally believed [12, 13] that the repulsive contribution to
the force acting on two parallel opposite sides of a single box (separated by a distance a) and
resulting here from (21-22) could be measured in experiment. However, it is not possible to use
the expression (19-23) directly to calculate the force since it includes the self-energy Casimir
parts (21-22) of the other sides of the resonator. Nevertheless the expression (19-23) can be
used to derive a measurable force (26) between the freely moving parallel plates inserted inside
an infinite cylinder of the same cross section as the plates.

To get the free energy Farb(a, β) for bosons at nonzero temperatures (β = 1/T ) one has to
make the substitutions:

p → pm =
2πm

β
, (28)

∫ +∞

−∞

dp

2π
→ 1

β

+∞
∑

m=−∞

. (29)

Thus the free energy describing the interaction of the two parallel perfectly conducting plates
inside an infinite perfectly conducting cylinder of an arbitrary cross section has the form:

Farb(a, β) =
1

β

∑

λkD

+∞
∑

m=−∞

1

2
ln

(

1 − exp(−2a
√

λ2
kD + p2

m)
)

+

+
1

β

∑

λiN

+∞
∑

m=−∞

1

2
ln

(

1 − exp(−2a
√

λ2
iN + p2

m)
)

, (30)
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where λ2
kD and λ2

iNeum are eigenvalues of the two-dimensional Dirichlet and Neumann problems
(a boundary here coincides with the boundary of each plate inside the cylinder):

∆(2)fk(x, y) = −λ2
kDfk(x, y) (31)

fk(x, y)|∂M = 0, (32)

∆(2)gi(x, y) = −λ2
iNgi(x, y) (33)

∂gi(x, y)

∂n

∣

∣

∣

∂M
= 0. (34)

The attractive force between the plates inside an infinite cylinder of the same cross section
at nonzero temperatures is given by:

F (a, β) = −∂Farb(a, β)

∂a
=

− 1

β

∑

ωTD

ωTD

exp(2aωTD) − 1
− 1

β

∑

ωTN

ωTN

exp(2aωTN ) − 1
. (35)

Here ωTD =
√

p2
m + λ2

kD and ωTN =
√

p2
m + λ2

iN .

3 Asymptotic cases

It is convenient to apply the technique of the heat kernel to obtain the short distance behaviour
of the free energy (30). It can be done by noting that if the heat kernel expansion

∑

λi

e−tλ2
i ∼

t→0

+∞
∑

k=0

t
−n+k

2 ck (36)

exists (n is a dimension of the Riemannian space) then one can write the expansion

∑

λi

e−
√

tλi ∼
t→0

n−1
∑

k=0

2 Γ(n − k)

Γ((n − k)/2)
t
−n+k

2 ck (37)

by making use of the analytical structure of the zeta function. The strategy is the following:
one expands the logarithms in the formula (30) in series and then applies the expansion (37) to
each term.

For a � β/(4π) one obtains from (30) and (37) the leading terms for the free energy:

Farb(a, β)|a�β/(4π) = −ζR(4)

8π2

S

a3
− ζR(2)

4πa
(1 − 2χ) + O(1), (38)

where

χ =
∑

i

1

24

( π

αi
− αi

π

)

+
∑

j

1

12π

∫

γj

Laa(γj)dγj . (39)

Here αi is the interior angle of each sharp corner and Laa(γj) is the curvature of each smooth
section described by the curve γj . The force calculated from (38) coincides with FC in [3],
(Eq.7).

In the opposite long distance limit a � β/(4π) one has to keep only m = 0 term in (30).
Thus the free energy of the plates inside a cylinder in this limit (the high temperature limit) is
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equal to:

Farb(a, β)|a�β/(4π) =
1

2β

∑

λkD

ln
(

1 − exp(−2aλkD)
)

+

+
1

2β

∑

λiN

ln
(

1 − exp(−2aλiN )
)

(40)

This result is new.
One can check that the limit a → 0 in (40) immediately yields the high temperature result

for two parallel perfectly conducting plates separated by a distance a. One expands logarithms
in series and uses (37) and c0D = c0N = S/(4π) in two dimensions (n = 2) to obtain:

Farb(a, β)|a�β/(4π),a→0 =

= −
∑

λkD

1

2β

+∞
∑

n=1

exp(−2anλkD)

n

∣

∣

∣

a→0
−

∑

λiN

1

2β

+∞
∑

n=1

exp(−2anλiN )

n

∣

∣

∣

a→0
=

=

+∞
∑

n=1

− 1

2β

1

n

1

(2an)2
2(c0D + c0N ) = −ζR(3)

βa2

S

8π
, (41)

which is a well known result [14, 15, 16].
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