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Abstract

We study the DGP model as a modified gravity model alternative to dark energy. It is
shown that due to the modification of the gravity at large distance, a new scalar degree of
freedom appears. This provides a possibility to discriminate the model from dark energy
models in general relativity, but at the same time, poses a question of theoretical consistency
of the model. This paper is based on Refs. [1] - [4] which are collaborations with D. Sergei,
K. Izumi, R. Maartens, S. Sibiryakov and T. Tanaka

1 Introduction

The acceleration of the late-time universe, as implied by observations of Supernovae redshifts,
cosmic microwave background anisotropies and the large-scale structure, poses one of the deep-
est theoretical problems facing cosmology. Within the framework of general relativity, the
acceleration must originate from a dark energy field with effectively negative pressure, such as
vacuum energy or a slow-rolling scalar field (“quintessence”). So far, none of the available mod-
els has a natural explanation. For example, in the simplest option of vacuum energy, leading
to the “standard” LCDM model, the incredibly small,

ρΛ,obs =
Λ

8πG
∼ H2

0M2
P � ρΛ,theory , (1)

and incredibly fine-tuned,
ΩΛ ∼ Ωm , (2)

value of the cosmological constant cannot be explained by current particle physics.
An alternative to dark energy plus general relativity is provided by models where the accel-

eration is due to modifications of gravity on very large scales, r & H−1
0 . One of the simplest co-

variant models is based on the Dvali-Gabadadze-Porrati (DGP) brane-world model [5], in which
gravity leaks off the 4-dimensional Minkowski brane into the 5-dimensional “bulk” Minkowski
spacetime at large scales. The 5D action describing the DGP model is given by

S =
1

2κ2

∫

d5x
√
−gR +

1

2κ2
4

∫

d4x
√
−γ (4)R −

∫

d4x
√
−γLm. (3)

On small scales, gravity is effectively bound to the brane and 4-dimensional Newtonian dy-
namics is recovered to a good approximation. The transition from 4- to 5-dimensional behaviour
is governed by a crossover scale rc; the weak-field gravitational potential behaves as

Ψ ∼
{

r−1 for r < rc

r−2 for r > rc
(4)
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The DGP model was generalized by Deffayet to a Friedman-Robertson-Walker brane in a
Minkowski bulk [6]; the gravity leakage at late times initiates acceleration – not due to any
negative pressure field, but due to the weakening of gravity on the brane. The energy conserva-
tion equation remains the same as in general relativity, but the Friedman equation is modified:

ρ̇ + 3H(ρ + p) = 0 , (5)

H2 − H

rc
=

8πG

3
ρ . (6)

It is important to stress that the modification to the Friedman equation is derived from a
covariant 5-dimensional action and junction conditions across the brane [6].

The modified Friedman equation (6) shows that at late times in a CDM universe, with
ρ ∝ a−3 → 0, we have

H → H∞ =
1

rc
. (7)

Since H0 > H∞, in order to achieve acceleration at late times, we require rc & H−1
0 , and this

is confirmed by fitting SN observations [7]. Like the LCDM model, the DGP model is simple,
with a single parameter rc to control the late-time acceleration although the DGP model does
not provide a natural solution to the late-acceleration problem; similarly to the LCDM model,
where Λ must be fine-tuned, the DGP parameter rc must be fine-tuned to match observation.

The most interesting aspect of the DGP model is that there is a possibility to distinguish the
model from dark energy models in general relativity. This is because the recovery of the general
relativity is very subtle. Although the weak-field gravitational potential behaves as 4D on scales
smaller than rc, the linearized gravity is not described by general relativity. This is because
the modification of the gravity introduces a new scalar degrees of freedom. Due to this scalar
degrees of freedom, the linearized gravity is described by Brans-Dicke gravity. However, this
scalar mode becomes non-linear on larger scales than expected. Let us consider the static source
with mass M . Gravity becomes non-linear near the Schwarzshild radius rg = 2GM . However,
the scalar mode becomes non-linear at r∗ = (rgr

2
c )

1/3 which is much larger than rg if rc ∼ H−1
0 .

In fact, for the Sun r∗ is much larger than the size of the solar system. A remarkable finding is
the once the brane bending becomes non-linear, general relativity is recovered. This non-linear
shielding of the scalar mode is crucial to escape from the tight solar system constraints Fig. 1
summarize the behaviour of gravity in the DGP model.

This complicated behaviour of gravity gives us an opportunity to distinguish the DGP
model from dark energy models in general relativity. On largest scales, gravity becomes 5D.
Then the large scale Integrated Sachs Wolfe (ISW) effect is sensitive to the 5D gravity. Even
on small scales compared with rc, the scalar mode of gravity gives a distinct features to large
scale structure. If perturbations become non-linear, the theory approaches to general relativity.
This transition from linear theory described by Brans-Dicke to non-linear physics described by
general relativity can be probed by gravitational lensing. Fig. 1 also shows possible cosmological
probes of the DGP gravity.

Due to this possibility of discrimination from general relativity models, the DGP model
is a very popular model for modified gravity alternative to dark energy. However, from a
theoretical point of view, these interesting features could be, at the same time, signatures
of inconsistencies of the model. For example, the non-linear interaction of the scalar mode
becomes important on very large scales. If we consider a Planck mass particle, this scale
becomes r∗ = (`plr

2
c )

1/3 ∼ 1000km where `pl is a Planck length and rc ∼ H−1
0 . This implies

that quantum corrections cannot be neglected below 1000km. We will come back to this problem
in conclusion. Even if we focus on the linearized behaviour of the scale mode, there appears a
problem of a ghost instability. In the case where the brane is described by de Sitter spacetime,
it is proved that the scalar mode becomes a ghost.
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Figure 1: Summary of the behaviour of gravity in the DGP model.

In this paper, we focus on the behavior of linear cosmological perturbations in cosmological
background. In section 2, we discuss the solutions for linearized metric perturbations under
horizon and explain a possibility to discriminate the DGP model from general relativity models
of dark energy. Then we point out that the behaviour of the metric perturbations show a
signature of the inconsistency of the theory, namely the existence of the ghost-like excitation.
In section 3, we confirm the existence of the ghost in de Sitter background. It is argued that
the ghost is associated with the difficulty of massive gravity theory in de Sitter background. In
section 4, the scalar mode is identified as a brane bending mode and the effective theory of this
mode is discussed. Section 5 is devoted to conclusion.

2 Linear growth rate

In Ref. [3], solutions for metric perturbations under horizon are obtained by consistently solving
5D perturbations. Scalar metric perturbations are given in longitudinal gauge by

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)d~x2 , (8)

and the perturbed energy-momentum tensor for matter is given by

δT µ
ν =

(

−δρ aδq,i

−a−1δq,i δp δi
j

)

. (9)

The solutions for the brane metric perturbations are

k2

a2
Φ = 4πG

(

1 − 1

3β

)

ρ4, (10)

k2

a2
Ψ = −4πG

(

1 +
1

3β

)

ρ4, (11)

where

β = 1 − 2rcH

(

1 +
Ḣ

3H2

)

, (12)
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and
∆ = δρ − 3Hδq. (13)

This agrees with the results obtained by Lue, Scoccimarro and Starkman [11]. They find
spherical symmetric solutions by closing the 4D equations using an anzatz for the metric and
checked in retrospect that the obtained solutions satisfy the regularity in the bulk. Here we
have shown that the solutions (10) and (11) are uniquely determined by the regularity condition
in the bulk within our approximations.

The modified Poisson equation (10) shows the suppression of growth. The rate of growth is
determined by ∆, and for CDM,

4̈ + 2H4̇ = −k2

a2
Ψ . (14)

which leads to

4̈ + 2H4̇ = 4πG

(

1 +
1

3β

)

ρ 4 . (15)

Thus the growth rate receives an additional modification from the time variation of Newton’s
constant through β.

In Fig. 2, we show the linear growth factor ∆/a for the DGP model, and compare it with
LCDM and with the general relativity dark energy model whose background evolution matches
that of the DGP model. We also showed the incorrect DGP result in which the inconsistent
assumption is effectively adopted, which has been frequently adopted in literatures. The correct
equations for subhorizon density perturbations are crucial for meaningful tests of DGP predic-
tions against structure formation observations. And such tests are essential for breaking the
degeneracy with LCDM that arises with SN redshift observations [10, 12]. The distance-based
SN observations draw only upon the background 4D Friedman equation (6) in DGP models,
and therefore there are quintessence models in general relativity that can produce precisely
the same SN redshifts as DGP. By contrast, structure formation observations require the 5D
perturbations in DGP, and one cannot find equivalent general relativity models.

While the linear grwoth rate provides us the opportunity to distinguish the DGP model
from general relativity models, it also shows a signature of the inconsistency of the model. The
modification of metric perturbations can be described by a linearized scalar-tensor gravity with
Brans-Dicke parameter [11]

ω =
3

2
(β − 1), (16)

where the gravitational scalar corresponds to the bending of the brane. If we take rc ∼ H0, ω
is always smaller than −3/2. In BD theory, if ω < −3/2, the BD scalar becomes a ghost. This
implies that the scalar mode behaves as a ghost. In fact, the growth rate shows the suppression
of the gravitational collapse. It is understood as the effect of the ghost that mediates the
repulsive force. In the next section, we prove the existence of the ghost in a more rigorous way
restricting spacetime on a brane to de Sitter spacetime. Note that the condition for the ghost
in de Sitter spacetime reduced from ω < −3/2 becomes

Hrc > 1/2, (17)

where Hrc > 1 for the positive tension brane and Hrc = 1 for self-accelerating universe.

3 Ghost in de Sitter spacetime

The 5D solution for the metric with the 4D de Sitter brane can be obtained as

ds2 = dy2 + N(y)2γµνdxµdxν , N(y) = 1 + Hy, (18)
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Figure 2: The growth history g(a) = 4(a)/a is shown for LCDM (long dashed) and DGP (solid,
thick). The growth history for a dark energy model (short dashed) with the identical expansion
histories with DGP. Due to the time variation of Newton’s constant through β in Eq. (15), the
growth factor g(a) receives an additional suppression compared with the dark energy model.
DGP-4D (solid, thin) shows the incorrect result in which the inconsistent assumption is adopted
[10]. We set the desity parameter for matter today as Ωm0 = 0.3.

where γµν is the metric for the de Sitter spacetime and the brane is located at y = 0. There is
a solution for the de Sitter spacetime without σ,

H =
1

rc
. (19)

We call this solution the self-accelerating universe.
Let us investigate the perturbations N(y)2γµν + hµν about the background de Sitter space-

time. In the following, we assume Hrc 6= 1 and treat the case Hrc = 1 separately. In addition
to the gravitational perturbations hµν , we must take into account a perturbation of the position
of the brane y = ϕ(x) [14]. Using the transverse-traceless gauge ∇µhµν = h = 0, the perturbed
junction condition is given by

kµν − Hhµν − rc

[

Xµν(h) − κ2
4

(

Tµν − 1

3
γµνT

)]

= −(1 − 2Hrc)
(

∇µ∇ν + H2γµν

)

ϕ, (20)

where kµν = (1/2)∂yhµν on the brane and Xµν is given by

Xµν = δ(4)Gµν + 3H2hµν

= −1

2

(

�4hµν −∇µ∇αhα
ν −∇ν∇αhα

µ + ∇µ∇νh
)

− 1

2
γµν(∇α∇βhαβ − �4h) + H2

(

hµν +
1

2
γµνh

)

.

(21)

The equation of motion for ϕ is obtained from the traceless condition h = 0;

(1 − 2Hrc)(�4 + 4H2)ϕ =
κ2T

6
.
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Let us find solutions for the vacuum brane Tµν = 0. Using the separation of variables
hµν =

∫

dm eµν(x)Fm(y), the equation of motion in the bulk is written as

F ′′

m +
1

N2
(m2 − 2H2)Fm = 0, (22)

where prime denotes a derivative with respect to y. There are two types of solutions. One type
of solution is an inhomogeneous solution sourced by the scalar mode ϕ. We call this solution the
spin-0 perturbation. The other solution is a homogeneous solution with ϕ = 0, which is called
the spin-2 perturbation. The spin-2 perturbations χµν satisfy the junction condition without ϕ

χ′

µν − 2Hχµν = −m2rcχµν . (23)

We find a tower of continuous Kaluza-Klein (KK) modes starting from m2 = (9/4)H2 as well
as a normalizable discrete mode

m2
d

H2
=

1

(Hrc)2
(3Hrc − 1), (24)

for Hrc > 2/3 [13]. For Hrc > 1, the mass is in the range 0 < m2
d ≤ 2H2 where m2

d = 2H2 for
the self-accelerating universe Hrc = 1 and m2

d → 0 for Hrc → ∞.
For the spin-0 perturbations, there is a normalizable solution given by

hµν =
1 − 2Hrc

H(1 − Hrc)
(∇µ∇ν + H2γµν)ϕ. (25)

This is a solution with m2 = 2H2.
We can construct the 2nd order action for hµν and ϕ from the 5D action. The result is given

by

δ2S = − 1

4κ2

∫

d5x
√
−gN−4hµνδ(5)Gµν +

1

κ2

∫

d4x
√
−γLB , (26)

where δ(5)Gµν is the 5D perturbed Einstein tensor and

LB = kµνhµν − kh +
1

2
H(h2 − hµνhµν)

+ (1 − 2Hrc)
(

hµν∇µ∇νϕ − h∇ρ∇ρϕ − 3H2hϕ
)

− 3H
(

−(1 − 2Hrc)ϕ(�4 + 4H2)ϕ +
κ2

3
Tϕ

)

+
1

2
κ2hµνTµν − rc

2
hµνXµν(h). (27)

This action gives the correct equation of motion and the junction condition for hµν and the
equation of motion for ϕ.

We can derive an effective action for the brane fluctuation ϕ by substituting the 5D solution
for hµν given by ϕ (25) into the 5D action and get the off-shell action for ϕ by integrating out
only with respect to the extra coordinate y [16]. This yields the action for ϕ as

Sϕ =
3H

2κ2

(

1 − 2Hrc

1 − Hrc

)
∫

d4x
√
−γϕ(�4 + 4H2)ϕ. (28)

The 4D effective action for the spin-2 perturbations is also obtained in a similar way. For the
discrete mode with m2

d, we get

Sχ =
rc(3Hrc − 1)

4κ2(3Hrc − 2)

∫

d4x
√
−γχµν(�4 − 2H2 − m2

d)χµν , (29)
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where transverse-traceless gauge fixing conditions ∇µχµν = χµ
ν = 0 are imposed . This is

exactly the same action for the spin-2 perturbations in the 4D massive gravity theory where
the Pauli-Fierz (PF) mass term is added to the Einstein-Hilbert action by hand [17]

SM = −M2

8κ2
4

∫

d4x
√
−γ(hµνhµν − h2). (30)

Figure 3: Summary of the mass spectrum of the scalar perturbations in + branch. Spin-2
perturbation has continuous modes with m2 ≥ (9/4)H2 and a discrete mode with m2 = m2

d

while spin-0 perturbation has m2 = 2H2. In the limit Hrc → 1, both the helicity-0 excitation of
spin-2 perturbation and the spin-0 perturbation have mass m2 = 2H2 and there is a resonance.

Ref. [1] studied the existence of the ghost based on the above effective action. Let us focus
on + branch. The result is summarized in Fig 3. For Hrc > 1, the discrete mode of spin-2
perturbations has mass given by 0 < m2 < 2H2. It is well known that the spin-2 perturbations
contain a helicity-0 excitation that is a ghost in this mass region. For Hrc < 1, the spin-2
perturbations become healthy but the spin-0 perturbations becomes a ghost.

On a self-accelerating universe Hrc = 1, the situation is complicated because the spin-0 per-
turbation and the discrete mode of the spin-2 perturbations has the same mass and there occur
a mixing. Ref KK2 studied this case very carefully. The solution for the spin-2 perturbations
become

hµν = Aµν(x) +
1

H
(∇µ∇ν + H2γµν)ϕ(x) log (1 + Hy) . (31)

where
�Aµν − 4H2Aµν = H

(

∇µ∇ν + H2γµν

)

ϕ . (32)

Substituting this solution to the 5D action, the effective action is obtained as

Seff =
1

κ
2H

∫

d4x
√
−γ

{

− AµνXµν(A) − H2AµνAµν + H2A2

− H(Aµν∇µ∇νϕ − A�ϕ − 3H2Aϕ) − 9H2

4
ϕ(� + 4H2)ϕ

}

,

(33)
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where we introduced the notation A ≡ Aµ
µ.

In order to study the existence of the ghost, it is needed to write the effective action only
in terms of phyical degrees of freedom. Ref. [3] performs the Hamiltonian analysis to derive
the reduced Hamiltonian written only in terms of physial degrees of freedom. There are two
dynamical degrees of freedom, namely the spin-0 mode and the helicity-0 excitation of spin-2
perturbations. It is found that, in general, the Hamiltonian cannot be diagonalized. However,
on small scales under horizon, it is possible to diagonalize the Hamiltonian and we find a ghost
from a mixing between a spin-0 perturbation and a helicity-0 excitation of spin-2 perturbations.

4 Spin-2 and spin-0 connection -amplitude analysis

The existence of the ghost is summarized in Fig 3. An interesting issue is that the spin-0 ghost
appears as soon as the spin-2 ghost disappears. This comes from the fact that at m2 = 2H2,
the spin-0 and spin-2 perturbations degenerate as is shown in Ref. [4]. In fact we can make the
spin-2 perturbations from a scalar

hµν = (∇µ∇ν − H2γµν)X, (34)

if X satisfies
(� + 4H2)X = 0. (35)

This is a scalar mode with mass squared −4H2. At the same time hµν is a transverse-tarceless
perturbations and from the identity,

(� − 4H2)
(

∇µ∇ν − H2γµν

)

X =
(

∇µ∇ν − H2γµν

)

(� + 4H2)X = 0,

it is identified to have a mass given by m2 = 2H2. In fact, the massive gravity with m2 = 2H2

has an ’symmetry’ where Eq. (34) is a gauge mode. Then this symmetry can be used to eliminate
the helicity-0 mode and hence a ghost. However, in the self-accelerating universe, there is a
spin-0 perturbations which breaks this symmetry. In this section, we show that this existence
of the spin-0 mode is inevitable to have a consistent theory with matter perturbations with
T 6= 0.

In order to see this fact, it is convenient to calculate an amplitude A = (1/2)hµνT µν . In the
self-accelerating branch we have massive spin-2 perturbations (one discrete mode and an infinite
tower of massive modes) and the spin-0 perturbations. Then the amplitude can be separated
as

A ≡ 1

2
hµν(0)T µν = As=2 + As=0. (36)

Using the result for the spectrum, the spin-2 contribution is calculated as

As=2 = −κ
∑

i

ui(0)
2
[

Tµν(�(4) − 2H2 − m2
i )

−1T µν

−1

3

m2
i − 3H2

m2
i − 2H2

T (�(4) + 6H2 − m2
i )

−1T

]

, (37)

where the solution for the mode functions ui(0)
2 are given by

u2
d(0) =

1

2rc

3Hrc − 2

3Hrc − 1
, m2

d =
3Hrc − 1

r2
c

,

u2
m(0) =

H

π

k2

(

m2rc

H − 3
2

)2
+ k2

, m2 >
9H2

4
, (38)
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and

k =

√

m2

H2
− 9

4
. (39)

Here we used the fact that each massive state is described by Pauli-Fierz massive gravity.
The effective action for the spin-0 was calculated as

Ss=0 =
3H

2κ

(

1 − 2Hrc

1 − Hrc

)
∫

d4x
√
−γξy(�(4) + 4H2)ξy. (40)

From the equation of motion for ξy

ξy =
1

1 − 2Hrc
(�(4) + 4H2)−1 κT

6
, (41)

the effective interaction between ξy and T is given by

As=0 = −1

2
H(1 − Hrc)

−1ξyT. (42)

Then we get the spin-0 contribution

As=0 = − κ

12

H

(1 − Hrc)(1 − 2Hrc)
T (�(4) + 4H2)−1T. (43)

The amplitude As=0 and As=2 look singular at Hrc = 1 where m2
d = 2H2. However, we

show that the total amplitude is finite at this point and the origin of the singularity comes from
the degeneracy between the spin-2 and spin-0 at m2 = 2H2, that is, the separation between the
spin-2 and spin-0 becomes singular.

In order to see this fact, we rewrite the amplitude as follows. Using the solutions for ui(0)
2,

we can show the identity

κ

3

∑

i

H2ui(0)
2

m2
i − 2

=
H2u2

d

m2
d − 2

+
H

π(Hrc)2

∫

∞

0

k2

(

k2 − 9
4

) (

k2 + 1
4

)

(

k2 + 9
4 − m2

d

H2

)

=
κ

12

H

1 − Hrc
. (44)

Then we can rearrange the amplitude as

A = −κ
∑

i

ui(0)
2

[

Tµν
1

�(4) − 2H2 − m2
i

T µν − 1

3
T

1

�(4) + 6H2 − m2
i

T

]

−κ

3

∑

i

ui(0)
2 1

m2
i − 2H2

T

(

1

�(4) + 6H2 − m2
i

− 1

�(4) + 4H2

)

T

−κ

6

H

1 − 2Hrc
T

1

�(4) + 4H2
T. (45)

The second line shows the connection between spin-2 and spin-0 around m2
i = 2H2. It seems

that m2
i = 2H2 is a singular point but this is not true. In fact the second line can be written as

A0−2 ≡ −κ

3

∑

i

ui(0)
2 1

m2
i − 2H2

T

(

1

�(4) + 6H2 − m2
i

− 1

�(4) + 4H2

)

T,

= −κ

3

∑

i

ui(0)
2T

1

(�(4) + 6H2 − m2
i )(�

(4) + 4H2)
T. (46)

Therefore there is no divergence at m2
i = 2H2. The singularity comes from the fact that the

spin-0 and the spin-2 are degenerate and we cannot separate the two at m2
i = 2H2.
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Around m2
i = 2H2, the second term determines the existence of the ghost. It is clear that

it is impossible to avoid the spin-2 ghost and spin-0 ghost at the same time because the spin-2
interaction and the spin-0 interaction act in an opposite way. For m2

i < 2H2, the spin-2 pole
gives the ghost. In this case, the spin-0 pole behaves normal. For m2

i > 2H2, the spin-2 becomes
normal but the spin-0 pole gives the ghost. This connection between the spin-0 and spin-2 is an
essential difference between the DGP and 4D massive gravity theory. Unfortunately, this fact
makes it very difficult to remove the ghost - once we remove the spin-2 ghost, the spin-0 ghost
appears!

5 Effective theory on small scales

On small scales, the degeneracy between spin-2 and spin-0 become unimportant and the theory
becomes quite simplified. Let us consider the limit

�(4) � H2,m2
i . (47)

Then the amplitude is approximated as

A = −κ
∑

i

ui(0)
2

[

Tµν
1

�(4)
T µν − 1

3
T

1

�(4)
T

]

− κ

6

H

1 − 2Hrc
T

1

�(4)
T. (48)

Here we neglected A0−2 using the assumption (47) because

A0−2 → −κ

3

∑

i

ui(0)
2T

1

(�(4))2
T, (49)

hence this part does not give any contributions within the approximations (47). Then on small
scales it is possible to diagonalise spin-0 and spin-2.

We can see Hrc = 1 is not a special point anymore. This is the reason why the boundary
effective action approach, which uses the small scales limit does not see any pathology at
Hrc = 1.

Now using the solutions for the mode functions we get
∑

i

ui(0)
2 = ud(0)

2 +
∑

um(0)2

=
1

2rc

3Hrc − 2

3Hrc − 1
+

H

π(Hrc)2

∫

∞

0
dk

k2

(

k2 + 9
4

) (

k2 + 9
4 − m2

d

)

=
1

2rc
. (50)

This is an expected result. The effective gravitational coupling is read as

κ
∑

i

ui(0)
2 = κ4, (51)

so we see that the 4D gravity is recovered by the summation of massive states. Then the
amplitude is calculated as

A = −κ4

[

Tµν
1

�(4)
T µν − 1

3
T

1

�(4)
T

]

− κ4

3

Hrc

1 − 2Hrc
T

1

�(4)
T. (52)

The first terms is exactly the same as the amplitude in Minkowski brane in the normal branch.
Due to the scalar polarisation, the coefficient in front of T�(4) −1T is 1/3 not 1/2. The last
term represents the effect of the curvature of the brane. Then finally we get

A = −κ4

[

Tµν
1

�(4)
T µν − 1

3

1 − 3Hrc

1 − 2Hrc
T

1

�(4)
T

]

. (53)
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This result can be compared with the 4D Brans-Dicke (BD) theory. In the BD theory with BD
parameter ω, the amplitude is given by

A = −κ4

[

Tµν
1

�(4)
T µν − 1

3

1 + ω

1 + 2ω
3

T
1

�(4)
T

]

. (54)

Then the BD parameter is given by
ω = −3Hrc. (55)

It is known that the BD theory contains a ghost if

ω < −3

2
. (56)

This means that there is a ghost if Hrc > 1/2 which agrees with the spectrum analysis.
The origin of the ghost is the last term in (52). In order to identify this origin, let us derive

the amplitude in a different way. The amplitude is also written as

A =
1

2
hµν(0)T µν =

1

2
h(TT )

µν T µν − HξyT. (57)

Here the brane bending mode satisfies

(�(4) + 4H2)ξy =
1

1 − 2Hrc

κ

6
T. (58)

The junction condition for the transverse-traceless modes is given by

(∂y − 2H) h(TT )
µν = −κΣµν − rc(�

(4)− 2H2)h(TT )
µν , (59)

where

Σµν = Tµν − 1

3
H2γµνT +

1

3
(∇µ∇ν + H2γµν)(�(4) + 4H2)−1T. (60)

The solution for transverse-traceless perturbations can be obtained by the Green’s function
method as

h(TT )
µν = −2κ

∑

i

ui(0)
2

�(4) − 2H2 − m2
i

Σµν . (61)

Then A is written as

A = −κ
∑

i

ui(0)
2

[

Tµν
1

�(4) − 2H2 − m2
i

T µν − 1

3
T

1

�(4) + 6H2 − m2
i

T

+
1

3
H2T

1

�(4) + 6H2 − m2
i

1

�(4) + 4H2
T

]

− H

1 − 2Hrc

κ

6
T

1

�(4) + 4H2
T. (62)

It is easy to see that this is equivalent to (45) using (46). Then we see that the last term in
(52) is noting but the contribution from ξy

This indicates that on small scales we only need to look at the contribution of the brane
bending mode and we do not need to solve the 5D perturbations explicitly. This is the method
adopted in Ref. NR Let us again consider the limit

�(4) � r−2
c . (63)
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Using this approximations, we can only keep the 4D terms in the 5D second order action. Then
the 4D boundary effective action is obtained as

SB =
1

κ

∫

d4x
√
−γ
[

(1 − 2Hrc)
(

hµν∇µ∇νξy − h∇ρ∇ρξ
y − 3H2hξy

)

−3H
(

−(1 − 2Hrc)ξ
y(�4 + 4H2)ξy +

κ2

3
Tξy

)

+
1

2
κ2hµνTµν − rc

2
hµνXµν(h)

]

, (64)

where H = H in the self-accelerating branch. As this is 4D theory, it is easy to calculate the
amplitude. We get

A = −κ4

[

Tµν
1

�(4)
T µν − 1

3
T

1

�(4)
T +

1

3
H2T

1

(�(4))2
T
]

− H

1 − 2Hrc

κ

6
T

1

�(4)
T

= −κ4

[

Tµν
1

�(4)
T µν − 1

3

1 − 3Hrc

1 − 2Hrc
T

1

�(4)
T
]

. (65)

This is consistent with the result obtained in the previous section.
We can diagonalise the action by defining

hµν = χµν − r−1
c (1 − 2Hrc)γµνξy. (66)

The resultant action is

SB =
1

2κ4

∫

d4x
√
−γ
[

− χµνX
µν(χ) + κ4χµνT

µν

+
3

rc
(1 − 2Hrc)ξ

y(�(4) + 4H2)ξy − κ4

rc
ξyT

]

. (67)

It is clear that ξy becomes a ghost for Hrc > 1/2.

6 Conclusion

In this paper, we studied the DGP model as an alternative to dark energy models. We con-
centrated on the self-accelerating universe where the accelerating universe is realized without
introducing a cosmological constant. The cross over scale is fine-tuned rc = H−1

0 . Due to a new
scalar mode introduced by the modification of gravity, the linearized gravity is described by the
Brans-Dicke (BD) gravity under horizon. This gives a possibility to distinguish the model from
dark energy models in general relativity. However, the BD parameter is shown to be smaller
than −3/2, which indicates the existence of ghost like excitations. We confirm the existence of
the ghost in de Sitter in several ways.

We come back to the strong coupling problem. As we explained in the introduction, we
need to take into account the non-linearity of the brane bending mode at r∗ = (r2

crg)
1/3. This

scale would be different in de Sitter spacetime. The effective action including the non-linear
interaction of ξy looks like

S =
1

2κ4

∫

d4x
√
−γ

[

3

rc
(1 − 2Hrc)ξ

y(�(4) + 4H2)ξy + (∂ξy)2�(4)ξy

]

. (68)

in de Sitter spacetime where the non-linear term is the same as Minkowski case [9]. The point
is that the quadratic part of the action is modified in the de Sitter spacetime, the non-linear
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interaction is insensitive to the curvature of the background spacetime. Then the strong coupling
scale becomes

r∗ =
(

r2
c (1 − 2Hrc)

−2rg

)1/3
. (69)

Then for Hrc � 1, r∗ becomes small. This confirms the suggestion made by Ref. [9] where
the kinetic term for the brane bending receives a correction from the extrinsic curvature of the
brane. This opens up a possibility to avoid the strong coupling problem.

The DGP model provided us the first concrete model for the modified gravity alternative to
dark energy models where we can study the behaviour of gravity from a single covariant action.
It is revealed that the model can be distinguished from dark energy models in general relativity
from future observations. However, it also reveals the difficulties to construct the consistent
theory once we modified general relativity on large scales. More efforts have to be made to
develop consistent models and test again ever improving cosmological observations.
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