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Abstract

We present results for the universal anomalous dimension γuni(j) of Wilson twist-2
operators in the N = 4 Supersymmetric Yang-Mills theory in the first three orders of
perturbation theory. These expressions are obtained by extracting the most complicated
contributions from the corresponding anomalous dimensions in QCD. This result is in an
agreement with the hypothesis of the integrability of N = 4 Supersymmetric Yang-Mills
theory in the context of AdS/CFT-correspondence.

1 Introduction

The anomalous dimensions of the twist-2 Wilson operators govern the Bjorken scaling violation
for parton distributions in a framework of Quantum Chromodynamics (QCD). These quantities
are given by the Mellin transformation (the simbol˜ is used for spin-dependent case and as =
αs/(4π))

γab(j) =

∫ 1

0
dx xj−1Wb→a(x) = γ

(0)
ab (j)as + γ

(1)
ab (j)a2

s + γ
(2)
ab (j)a3

s + O(a4
s),

γ̃ab(j) =

∫ 1

0
dx xj−1W̃b→a(x) = γ̃

(0)
ab (j)as + γ̃

(1)
ab (j)a2

s + γ̃
(2)
ab (j)a3

s + O(a4
s) (1)

of the splitting kernels Wb→a(x) and W̃b→a(x) for the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equation [1] which evolves the parton densities fa(x,Q2) and f̃a(x,Q2) (hereafter
a = λ, g, φ for the spinor, vector and scalar particles, respectively 1) as follows

d

d lnQ2
fa(x,Q2) =

∫ 1

x

dy

y

∑

b

Wb→a(x/y) fb(y,Q2) ,

d

d lnQ2
f̃a(x,Q2) =

∫ 1

x

dy

y

∑

b

W̃b→a(x/y) f̃b(y,Q2) . (2)
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1In the spin-dependent case a = λ, g.

1



The anomalous dimensions and splitting kernels in QCD are known up to the next-to-next-to-
leading order (NNLO) of the perturbation theory [2, 3].

The QCD expressions for anomalous dimensions can be transformed to the case of the N -
extended Supersymmetric Yang-Mills theories (SYM) if one will use for the Casimir operators
CA, CF , Tf the following values CA = CF = Nc, Tfnf = NNc/2. For N=2 and N=4-extended
SYM the anomalous dimensions of the Wilson operators get also additional contributions coming
from scalar particles [4]. These anomalous dimensions were calculated in the next-to-leading
order (NLO) [5] for the N = 4 SYM.

However, it turns out, that the expressions for eigenvalues of the anomalous dimension ma-
trix in the N = 4 SYM can be derived directly from the QCD anomalous dimensions without
tedious calculations by using a number of plausible arguments. The method elaborated in
Ref. [4] for this purpose (it can be called as maximal transcendentality principe) is based on
special properties of the integral kernel for the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equa-
tion [6]-[8] in this model and a new relation between the BFKL and DGLAP equations (see [4]).
In the NLO approximation this method gives the correct results [4] for anomalous dimensions
eigenvalues, which were checked by later direct calculations in Ref. [5]. Its properties will be re-
viewed below only shortly and a more extended discussion can be found in [4]. Using the results
for the NNLO corrections to anomalous dimensions in QCD [3] and the method of Ref. [4] we
derived the eigenvalues of the anomalous dimension matrix for the N = 4 SYM in the NNLO
approximation [9].

The obtained result is very important for the verification of the various assumptions [10]–
[14] coming from the investigations of the properties of a conformal operators in the context of
AdS/CFT correspondence [15].

2 Evolution equation in N = 4 SYM

The reason to investigate the BFKL and DGLAP equations in the case of supersymmetric the-
ories is related to a common belief, that the high symmetry may significantly simplify their
structure. Indeed, it was found in the leading oredr (LO) [16], that the twist-2 operators
in N = 1 SYM are unified in supermultiplets with anomalous dimensions obtained from the
universal anomalous dimension γuni(j) by shifting its argument by an integer number. Further,
the anomalous dimension matrices for twist-2 operators are fixed by the superconformal invari-
ance [16]. Calculations in the maximally extended N = 4 SYM, where the coupling constant is
not renormalized, give even more remarkable results. Namely, it turns out, that here all twist-2
operators enter in the same multiplet, their anomalous dimension matrix is fixed completely by
the super-conformal invariance and its universal anomalous dimension in leading order (LO) is
proportional to Ψ(j − 1) − Ψ(1) (see the following section), which means, that the evolution
equations for the matrix elements of twist-2 operators in the multicolour limit Nc → ∞ are
equivalent to the Schrödinger equation for an integrable Heisenberg spin model [17, 18]. In
QCD the integrability remains only in a small sector of these operators [19]. In the case of
N = 4 SYM the equations for other sets of operators are also integrable [20, 21, 23, 22].

Similar results related to the integrability of the multi-colour QCD were obtained earlier in
the Regge limit [24]. Moreover, it was shown [8], that in the N = 4 SYM there is a deep relation
between the BFKL and DGLAP evolution equations. Namely, the j-plane singularities of LO
anomalous dimensions of the Wilson twist-2 operators in this case can be obtained from the
eigenvalues of the BFKL kernel by their analytic continuation. The NLO calculations in N = 4
SYM demonstrated [4], that some of these relations are valid also in higher orders of perturbation
theory. In particular, the BFKL equation has the property of the hermitian separability, the
linear combinations of the multiplicatively renormalized operators do not depend on the coupling
constant, the eigenvalues of the anomalous dimension matrix are expressed in terms of the
universal function γuni(j) which can be obtained also from the BFKL equation [4]. The results
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for γuni(j) were checked by direct calculations in Ref. [5]

3 LO anomalous dimension matrix in N = 4 SUSY

In the N = 4 SYM theory [25] one can introduce the following colour and SU(4) singlet local
Wilson twist-2 operators [4, 5]:

Og
µ1 ,...,µj

= ŜGa
ρµ1

Dµ2
Dµ3

...Dµj−1
Ga

ρµj
, (3)

Õg
µ1 ,...,µj

= ŜGa
ρµ1

Dµ2
Dµ3

...Dµj−1
G̃a

ρµj
, (4)

Oλ
µ1 ,...,µj

= Ŝλ̄a
i γµ1

Dµ2
...Dµj

λa i , (5)

Õλ
µ1 ,...,µj

= Ŝλ̄a
i γ5γµ1

Dµ2
...Dµj

λa i , (6)

Oφ
µ1 ,...,µj

= Ŝφ̄a
rDµ1

Dµ2
...Dµj

φa
r , (7)

where Dµ are covariant derivatives. The spinors λi and field tensor Gρµ describe gluinos and
gluons, respectively, and φr are the complex scalar fields. For all operators in Eqs. (3)-(7) the
symmetrization of the tensors in the Lorentz indices µ1, ..., µj and a subtraction of their traces
is assumed. Due to the fact that all twist-2 operators belong to the same supermultiplet the
eigenvalues of anomalous dimensions matrix can be expressed through one universal anomalous
dimension γuni(j) with shifted argument2.

The elements of the LO anomalous dimension matrix in the N = 4 SUSY have the following
form (see [18]):

for tensor twist-2 operators

γ(0)
gg (j) = 4

(
Ψ(1) − Ψ(j − 1) − 2

j
+

1

j + 1
− 1

j + 2

)
,

γ
(0)
λg (j) = 8

(
1

j
− 2

j + 1
+

2

j + 2

)
, γ(0)

ϕg (j) = 12

(
1

j + 1
− 1

j + 2

)
,

γ
(0)
gλ (j) = 2

(
2

j − 1
− 2

j
+

1

j + 1

)
, γ(0)

qϕ (j) =
8

j
,

γ
(0)
λλ (j) = 4

(
Ψ(1) − Ψ(j) +

1

j
− 2

j + 1

)
, γ

(0)
ϕλ (j) =

6

j + 1
,

γ(0)
ϕϕ(j) = 4 (Ψ(1) − Ψ(j + 1)) , γ(0)

gϕ (j) = 4

(
1

j − 1
− 1

j

)
, (8)

for the pseudo-tensor operators:

γ̃(0)
gg (j) = 4

(
Ψ(1) − Ψ(j + 1) − 2

j + 1
+

2

j

)
,

γ̃
a,(0)
λg (j) = 8

(
−1

j
+

2

j + 1

)
, γ̃

(0)
gλ (j) = 2

(
2

j
− 1

j + 1

)
,

γ̃
(0)
λλ (j) = 4

(
Ψ(1) − Ψ(j + 1) +

1

j + 1
− 1

j

)
. (9)

Note, that in the N = 4 SUSY multiplet there are also twist-2 operators with fermion quan-
tum numbers but their anomalous dimensions coincide up to an integer shift of the argument
with the above expressions for the bosonic components (cf. ref. [16]).

2Non-diagonal elements of the anomalous dimensions matrix are related with non-forward anomalous dimen-
sions by means of superconformal Ward identities [26] and can be expressed also through non-forward universal
anomalous dimension [27].
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3.1 Anomalous dimensions and twist-2 operators with a multiplicative renor-
malization

It is possible to construct 5 independent twist-two operators with a multiplicative renormal-
ization. The corresponding Mellin momenta of parton distributions and their LO anomalous
dimensions have the form (see [18]):

fI(j) = fg(j) + fλ(j) + fϕ(j) ∼ f+
λ,g,ϕ(j),

γ
(0)
I (j) = 4 (Ψ(1) − Ψ(j − 1)) ≡ −4S1(j − 2) ≡ γ

(0)
+ (j), (10)

fII(j) = −2(j − 1)fg(j) + fλ(j) +
2

3
(j + 1)fϕ(j) ∼ f0

λ,g,ϕ(j),

γ
(0)
II (j) = 4 (Ψ(1) − Ψ(j + 1)) ≡ −4S1(j) ≡ γ

(0)
0 (j), (11)

fIII(j) = −j − 1

j + 2
fg(j) + fλ(j) − j + 1

j
fϕ(j) ∼ f−

λ,g,ϕ(j),

γ
(0)
III(j) = 4 (Ψ(1) − Ψ(j + 3)) ≡ −4S1(j + 2) ≡ γ

(0)
− (j), (12)

fIV (j) = 2f̃g(j) + f̃λ(j) ∼ f̃+
λ,g(j),

γ
(0)
IV (j) = 4 (Ψ(1) − Ψ(j)) ≡ −4S1(j − 1) ≡ γ̃

(0)
+ (j), (13)

fV (j) = −(j − 1)f̃g(j) +
j + 2

2
f̃λ(j) ∼ f̃−

λ,g(j),

γ
(0)
V (j) = 4 (Ψ(1) − Ψ(j + 2)) ≡ −4S1(j + 1) ≡ γ̃

(0)
− (j), (14)

Thus, we have one supermultiplet of operators with the same anomalous dimension γuni(j)
proportional to Ψ(1)−Ψ(j−1). The momenta of the corresponding linear combinations of parton
distributions can be obtained from the above expressions fk(j) by an appropriate shift of their
argument j in accordance with the corresponding shift of the argument of γk(j). Moreover, the
coefficients in these linear combinations for N = 4 SUSY can be found from the super-conformal
invariance (cf. Ref [16]) and should be the same for all orders of the perturbation theory in an
appropriate renormalization scheme.

The momenta of three multiplicatively renormalizable twist-2 operators for the unpolarized
case are

fN (j) = agfg(j) + aλfλ(j) + aϕfϕ(j)

where the coefficients ai can be extracted from above expressions (10)-(14). If we insert this an-
zatz in the DGLAP equations (2) the following representations for the corresponding anomalous
dimensions

γ
(0)
N (j) = γ(0)

gg (j) +
aλ

ag
γ

(0)
λg (j) +

aϕ

ag
γ(0)

ϕg (j)

= γ
(0)
λλ (j) +

ag

aλ
γ

(0)
gλ (j) +

aϕ

aλ
γ

(0)
ϕλ (j)

= γ(0)
ϕϕ(j) +

ag

aϕ
γ(0)

gϕ (j) +
aλ

aϕ
γ

(0)
λϕ (j) (15)

can be obtained. Eqs.(15) lead to relations among the anomalous dimension matrix γ
(0)
ab (j)

(a, b = g, λ, ϕ) which should be valid also in the NLO approximation up to effects of breaking
the superconformal invariance (see [5] and references therein).
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Analogously for the set of two multiplicatively renormalizable operators in the polarized
case

f̃N (j) = ãgf̃g(j) + ãλf̃λ(j)

we can derive the following relations

γ̃
(0)
N (j) = γ̃(0)

gg (j) +
ãλ

ãg
γ̃

(0)
λg (j) = γ̃

(0)
λλ (j) +

ãg

ãλ
γ̃

(0)
gλ (j) . (16)

So, we have 9 equations for the matrix elements in the case of the usual partonic distributions
and 4 equations for the polarized distributions, which determines completely the anomalous

dimension matrices γ
(0)
ab (j) (a, b = g, λ, ϕ) and γ̃

(0)
ab (j) (a, b = g, λ) in terms of their eigenvalues

in LO
γ

(0)
± (j) = −4S1(j ∓ 2), γ

(0)
0 (j) = −4S1(j), γ̃

(0)
± (j) = −4S1(j ∓ 1) .

This procedure is considered in details in [4].

4 Method of obtaining the eigenvalues of the anomalous dimen-
sion matrix in N = 4 SYM

As it was already pointed out in the Introduction, the universal anomalous dimension can be
extracted directly from the QCD results without finding the scalar particle contribution. This
possibility is based on the deep relation between the DGLAP and BFKL dynamics in the N = 4
SYM [8, 4].

To begin with, the eigenvalues of the BFKL kernel turn out to be analytic functions of
the conformal spin |n| at least in two first orders of perturbation theory [4]. Further, in the
framework of the DR-scheme [28] one can obtain from the BFKL equation (see [8]), that there
is no mixing among the special functions of different transcendentality levels i 3, i.e. all special
functions at the NLO correction contain only sums of the terms ∼ 1/γ i (i = 3). More precisely,
if we introduce the transcendentality level i for the eigenvalues ω(γ) of integral kernels of the
BFKL equations in an accordance with the complexity of the terms in the corresponding sums

Ψ ∼ 1/γ, Ψ′ ∼ β′ ∼ ζ(2) ∼ 1/γ2, Ψ′′ ∼ β′′ ∼ ζ(3) ∼ 1/γ3,

then for the BFKL kernel in the leading order (LO) and in NLO the corresponding levels are
i = 1 and i = 3, respectively.

Because in N = 4 SYM there is a relation between the BFKL and DGLAP equations
(see [8, 4]), the similar properties should be valid for the anomalous dimensions themselves,

i.e. the basic functions γ
(0)
uni(j), γ

(1)
uni(j) and γ

(2)
uni(j) are assumed to be of the types ∼ 1/j i with

the levels i = 1, i = 3 and i = 5, respectively. An exception could be for the terms appearing
at a given order from previous orders of the perturbation theory. Such contributions could be
generated and/or removed by an approximate finite renormalization of the coupling constant.
But these terms do not appear in the DR-scheme.

It is known, that at the LO and NLO approximations (with the SUSY relation for the QCD
color factors CF = CA = Nc) the most complicated contributions (with i = 1 and i = 3,
respectively) are the same for all LO and NLO anomalous dimensions in QCD [2] and for
the LO and NLO scalar-scalar anomalous dimensions [5] 4. This property allows one to find

the universal anomalous dimensions γ
(0)
uni(j) and γ

(1)
uni(j) without knowing all elements of the

anomalous dimensions matrix [4], which was verified by the exact calculations in [5].

3Note that similar arguments were used also in [29] to obtain analytic results for contributions of some
complicated massive Feynman diagrams without direct calculations.

4This property is correct also at the NNLO level [9].
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Using above arguments, we conclude, that at the NNLO level there is only one possible

candidate for γ
(2)
uni(j). Namely, it is the most complicated part of the QCD anomalous dimen-

sions matrix (with the SUSY relation for the QCD color factors CF = CA = Nc). Indeed,
after the diagonalization of the anomalous dimensions matrix its eigenvalues should have this
most complicated part as a common contribution because they differ each from others only
by a shift of the argument and their differences are constructed from less complicated terms.
The non-diagonal matrix elements of the anomalous dimensions matrix contain also only less
complicated terms (see, for example, anomalous dimensions exact expressions at LO and NLO
approximations in Refs. [2] for QCD and [5] for N = 4 SYM) and therefore they cannot generate
the most complicated contributions to the eigenvalues of anomalous dimensions matrix.

Thus, the most complicated part of the NNLO QCD anomalous dimensions should coincide

(up to color factors) with the universal anomalous dimension γ
(2)
uni(j).

5 Universal anomalous dimension for N = 4 SYM

The final three-loop result 5 for the universal anomalous dimension γuni(j) for N = 4 SYM
is [9]

γ(j) ≡ γuni(j) = âγ
(0)
uni(j) + â2γ

(1)
uni(j) + â3γ

(2)
uni(j) + ..., â =

αNc

4π
, (17)

where

1

4
γ

(0)
uni(j + 2) = −S1, (18)

1

8
γ

(1)
uni(j + 2) =

(
S3 + S−3

)
− 2S−2,1 + 2S1

(
S2 + S−2

)
, (19)

1

32
γ

(2)
uni(j + 2) = 2S−3 S2 − S5 − 2S−2 S3 − 3S−5 + 24S−2,1,1,1

+6

(
S−4,1 + S−3,2 + S−2,3

)
− 12

(
S−3,1,1 + S−2,1,2 + S−2,2,1

)

−
(

S2 + 2S2
1

)(
3S−3 + S3 − 2S−2,1

)
− S1

(
8S−4 + S

2
−2

+4S2 S−2 + 2S2
2 + 3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1

)
(20)

and Sa ≡ Sa(j), Sa,b ≡ Sa,b(j), Sa,b,c ≡ Sa,b,c(j) are harmonic sums

Sa(j) =

j∑

m=1

1

ma
, Sa,b,c,···(j) =

j∑

m=1

1

ma
Sb,c,···(m), (21)

S−a(j) =

j∑

m=1

(−1)m

ma
, S−a,b,c,···(j) =

j∑

m=1

(−1)m

ma
Sb,c,···(m),

S−a,b,c,···(j) = (−1)j S−a,b,c,...(j) + S−a,b,c,···(∞)
(
1 − (−1)j

)
. (22)

The expression (22) is defined for all integer values of arguments (see [30, 4, 31]) but can
be easily analytically continued to real and complex j by the method of Refs. [32, 4, 31].

5Note, that in an accordance with Ref. [7] our normalization of γ(j) contains the extra factor −1/2 in
comparison with the standard normalization (see [2]) and differs by sign in comparison with one from Ref. [3].
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5.1 The limit j → 1

The limit j → 1 is important for the investigation of the small-x behavior of parton distributions
(see review [33] and references therein). Especially it became popular recently because there are
new experimental data at small x produced by the H1 and ZEUS collaborations in HERA [34].

Using asymptotic expressions for harmonic sums at j = 1 + ω → 1 (see [4, 5]) we obtain for
the N = 4 universal anomalous dimension γuni(j) in Eq. (17)

γ
(0)
uni(1 + ω) =

4

ω
+ O

(
ω1

)
, (23)

γ
(1)
uni(1 + ω) = −32 ζ3 + O

(
ω1

)
, (24)

γ
(2)
uni(1 + ω) = 32ζ3

1

ω2
− 232 ζ4

1

ω
− 1120ζ5 + 256ζ3ζ2 + O

(
ω1

)
(25)

in an agreement with the predictions for γ
(0)
uni(1 + ω), γ

(1)
uni(1 + ω) and also for the first term of

γ
(2)
uni(1 + ω) coming from an investigation of BFKL equation at NLO accuracy in [8] 6.

6 Integrability and the AdS/CFT-correspondence

We consider several important limits of (17)-(22), where our results can be compared with ones
obtained in other approaches.

6.1 The limit j → 4

The investigation of the integrability in N = 4 SYM for a BMN-operators [35] gives a possibility
to find the anomalous dimension of a Konishi operators [36, 23], which has the anomalous
dimension coinciding with our expression (17) for j = 4

γuni(j)
∣∣
j=4

= −6 â + 24 â2 − 168 â3 = −3α Nc

2π
+

3α2 N2
c

2π2
− 21α3 N3

c

8π4
. (26)

It is confirmed also by direct calculation in two [10, 5] and three-loop [12] orders.
A very interesting result comes from the consideration of the factorized S-matrix [13], which

based on the investigation of the both sides of AdS/CFT-correspondence [35, 21, 23, 22, 37, 38]
and gives a possibility to find three-loop anomalous dimension from the Bethe ansatz for arbi-
trary values of the Lorenz spin. The resulting Bethe ansatz reproduces our results for universal
anomalous dimension γuni(j) Eq. (17) and, thus confirms the hypotheses on integrability in
N = 4 SYM.

6.2 The limit j → ∞
In the limit j → ∞ the results (18)-(20) are simplified significantly. Note, that this limit is
related to the study of the asymptotics of structure functions and cross-sections at x → 1
corresponding to the quasi-elastic kinematics of the deep-inelastic ep scattering.

We obtain the following asymptotics for the N = 4 universal anomalous dimension γuni(j)
in Eq. (17) with

γ
(0)
uni(j) = −4

(
ln j + γe

)
+ O

(
j−1

)
, (27)

γ
(1)
uni(j) = 8ζ2

(
ln j + γe

)
+ 12ζ3 + O

(
j−1

)
, (28)

γ
(2)
uni(j) = −88ζ4

(
ln j + γe

)
− 16ζ2ζ3 − 80ζ5 + O

(
j−1

)
. (29)

6Unfortunately, the results of Refs. [8, 4] contain a misprint. Namely, the coefficient in front of â3 obtained
in the limit j → 1 in Eq. (39) of Ref. [4] should be multiplied by a factor 4.
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Recently the coefficients in the front of ln j in Eqs. (27)–(29) were confirmed by Eden and

Staudacher [14], where higher order terms γ
(n)
uni(j) (n ≥ 3) have been also obtained using Bethe

ansatz approach.

6.3 Resummation of γuni and the AdS/CFT correspondence

Last several years there was a great progress in the investigation of the N = 4 SYM theory in a
framework of the AdS/CFT correspondence [15] where the strong-coupling limit αsNc → ∞ is
described by a classical supergravity in the anti-de Sitter space AdS5×S5. In particular, a very
interesting prediction [39] (see also [40]) was obtained for the large-j behavior of the anomalous
dimension for twist-2 operators

γ(j) = a(z) ln j , z =
αNc

π
= 4â (30)

in the strong coupling regime (see Ref. [41] for asymptotic corrections):

lim
z→∞

a = −z1/2 +
3 ln 2

8π
+ O

(
z−1/2

)
. (31)

On the other hand, all anomalous dimensions γi(j) and γ̃i(j) (i = +, 0,−) coincide at large j
and our results for γuni(j) in Eq. (17) allow one to find three first terms of the small-z expansion
of the coefficient a(z) (see also Eqs. ([?])-([?]))

lim
z→0

a = −z +
π2

12
z2 − 11

720
π4z3 + ... . (32)

For resummation of this series we suggest the following equation for ã [5]

z = −ã +
π2

12
ã2 (33)

interpolating between its weak-coupling expansion up to NNLO

ã = −z +
π2

12
z2 − 1

72
π4z3 + O(z4) (34)

and strong-coupling asymptotics

ã = −2
√

3

π
z1/2 +

6

π2
+ O

(
z−1/2

)
≈ −1.1026 z1/2 + 0.6079 + O

(
z−1/2

)
. (35)

It is remarkable, that the prediction for NNLO based on the above simple equation is valid with
the accuracy ∼ 10%. It means, that this extrapolation seems to be good for all values of z.

7 Relation between pomeron and graviton in the framework of
the AdS/CFT correspondense

Further, for j → 2 let us take into account, that according to the BFKL equation [7] the
anomalous dimension of twist-2 operators is quantized in the Regge kinematics:

γ = 1/2 + iν + (j − 1)/2 = 1 + (j − 2)/2 + iν (36)

for the principal series of unitary representations of the Möbius group. On the other hand, in
the diffusion approximation valid near the leading singularity of the t-channel partial wave the
eigenvalue of the BFKL kernel is

j − 1 = ω0 − Dν2 , (37)
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where ω0 and D are the Pomeron intercept and diffusion coefficient, respectively. These quan-
tities are functions of the coupling constant. We assume, that for the large coupling constant in
N = 4 SUSY the Pomeron intercept approaches the graviton intercept in the AdS5 × S5 space
[42], which means, that

j0 = 1 + ω0 = 2 − ∆ , (38)

where ∆ is a small number. Further, due to the energy-momentum conservation (γ = 0 for
j = 2) the parameters ∆ and D are equal and γ(j) can be expressed near j = 2 only in terms
of one parameter

γ(j) = (j − 2)

[
1

2
− 1/∆

1 +
√

1 + (j − 2)/∆

]
. (39)

The derivative γ ′(2) can be calculated from our results in three first orders of the perturba-
tion theory:

γ′(2) =
1

2
− 1

2∆
= −π2

6
z +

π4

72
z2 − π6

540
z3 + ... . (40)

Similar to the case of large j for a resummation of this series we used the following equation
for ˜̃a = γ′(2) (see [5])

π2

6
z = − ˜̃a +

1

2
˜̃a

2
. (41)

Its solution at small z is

˜̃a = −π2

6
z +

π4

72
z2 − π6

432
z3 + ... . (42)

One can verify from eqs. (40) and (42), that the prediction for NNLO based on the simple
equation (41) is valid with the accuracy ∼ 20%. Therefore we can hope, that this method of
resummation gives us a good estimate also for the behavior of a at large z

γ′(2) = 1 −
√

π2

3
z + 1 ≈ − π√

3
z1/2 + 1 + O

(
z−1/2

)
. (43)

Thus, one obtains for the intercept of the Pomeron in N = 4 SUSY from the resummation
(41) at large z the result

j = 2 −
√

3

2π
z−1/2 − 3

4π2
z−1 −O

(
z−2

)
. (44)

On the other hand, from eqs. (36) and (37), using also the following relation valid in
ADS/CFT correspondence for the string energy at j close to 2 [15, 39]

E2 = (j + Γ)2 − 4, Γ = −2γ, (45)

we obtain, that the BFKL equation in the diffusion approximation (36) is equivalent to the
equation for the leading Regge trajectory in the superstring theory

j = 2 +
α′

2
t, t = E2/R2, α′ =

R2

2
∆, (46)

where R is the radius of the anti-de-Sitter space.
It is naturally to expect that this Regge trajectory remains approximately linear (up to

corrections to diffusion approximation of the BFKL equation) for all values of t and j. We can
attempt to use expression (39) also for large z

γ(j)|z→∞ = −
√

j − 2∆−1/2. (47)
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This relation is in an agreement with the prediction of A. Polyakov and other authors [15, 39]
7.

γ(j)|(z,j)→∞ = −1

2
E = −

√
πjz1/4 − 3

√
π

4

j3/2

z1/4
+ ..., (48)

providing that

∆ =
1

π
z−1/2. (49)

This number coincides up to 15% with the estimate ∆ = [
√

3/(2π)]z−1/2 obtained in (44)
from the resummation procedure (41). We can expect, that expression (47) with parameter
∆ calculated in (49) gives the anomalous dimension of twist-2 operators for z → ∞ and all j
(neglecting the nonlinearity effects).

Recently, the results (47)–(49) (see also [9, 43]) have been confirmed in the paper [44].

8 Conclusion

Thus, in this review we presented the results for anomalous dimension γuni(j) of twist-2 Wilson
operators in the N = 4 supersymmetric gauge theory up to the next-to-next-to-leading approxi-
mation and verified its self-consistency in the Regge (j → 1) and quasi-elastic (j → ∞) regimes.
Our result for universal anomalous dimension at j = 4 could be used to determine the anoma-
lous dimension of Konishi operator [36] up to 3-loops. It is remarkable, that our results coincide
8 with corresponding predictions from dilatation operator approach and integrability [23, 37].
The method, developed for this construction, can be applied also to less symmetric cases of
N = 1, 2 SYM and QCD, which are very important for phenomenological applications. For
the verification of the AdS/CFT correspondence the calculations of the various physical quan-
tities in N = 4 SYM attract a great interest due to a possibility to develop non-perturbative
approaches to QCD.

We demonstrated above that the expressions interpolating between the week and strong
regime work remarkably well both in limit j → ∞ and j → 2. The integrability of the evolution
equations for the twist-2 operators in LO [17, 18] is an interesting property of N = 4 SYM
which should be verified on NLO and NNLO level. We hope to discuss these problems in our
future publications.
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