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Abstract

We review a recently constructed (non-local) change of variables which brings the light-

cone gauge Yang-Mills action to the MHV-form.

1 Introduction

Recently, a new approach to the perturbative calculations in Yang-Mills (YM) theory has been

suggested by Cachazo, Svrček and Witten (CSW) [1]. In this new formalism, the vertices

are obtained from the so-called MHV-amplitudes (i.e. the amplitudes maximally violating the

helicity) by a suitable continuation off shell. This technique was shown to reproduce all known

gluon tree amplitudes and predicts a number of new results [2]. The successful generalization

for the one-loop amplitudes has been also developed [3] although a new additional vertex has

to be added at one-loop level in YM theory without supersymmetry. The MHV-like diagrams

for the gravity case have been formulated as well [4]. A complete list of references can be found

in [5].

In this short review we discuss the question of equivalence between the MHV diagrams and

the conventional YM perturbation theory expansion. The MHV diagram rules can of course be

described with help of an action functional, which we call the CSW action. It turns out that

there exists a change of variables transforming the standard YM action to the CSW action. The

formula for such a change of variables is obtained as follows [6] (see also ref. [7] for a different

approach). First, we recall a certain solution to the self-duality equation which serves for a

swift derivation of the MHV-amplitudes [8, 9]. This self-dual gauge field can be continued off

shell in the spirit of ref. [1] and provides very explicit change of variables which brings YM

Lagrangian in the light-cone gauge into the form of CSW Lagrangian. At present, we can check

this by a brute-force calculation only and feel that a better, more conceptual understanding

of our result is needed. This is despite the fact that the formula for the change of variables is

perfectly explicit and the geometrical origin of the self-dual solution behind it seems to be well

understood.
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The paper is organized as follows. First, we remind the MHV diagram rules (Section 2)

and present the YM action in the light-cone gauge (Section 3). Then, in Section 4 we describe

a solution to the self-duality equation which is relevant to the MHV-amplitudes. A change of

variables in the light-cone YM action, which renders it to the CSW action, is introduced in

Section 5. Some open questions are mentioned in the concluding Section.

2 MHV amplitudes

The helicity of gluons is not in general preserved by the scattering processes in the Yang-Mills

theory. A maximal violation of helicity happens in the scattering where one has two gluons of

negative helicity and arbitrary number of positive helicity gluons (we treat all the scattering

particles as incoming). The corresponding scattering amplitude is given by the following simple

rational function of the on-shell momenta of external massless particles [10, 11]1:

A(1−, 2−, 3+ . . . , n+) = gn−2

Y M

〈1, 2〉4

〈1, 2〉〈2, 3〉 . . . 〈n, 1〉
(1)

where the on-shell momentum of a massless particle in the standard spinor notations reads

as pαα̇ = λαλ̃α̇, λα and λ̃α̇ are positive and negative helicity spinors. The inner products in

spinor notations read as 〈λ1, λ2〉 = εαβλα
1 λ

β
2 = 〈1, 2〉 and [λ̃1, λ̃2] = ε

α̇β̇
λ̃α̇

1 λ̃
β̇
2 . These amplitudes

were interpreted as correlators in the auxiliary two-dimensional theory in [12] and in terms of

topological string on twistor target space in [13]. There are no amplitudes with zero or one

negative helicity gluons at the tree level. However, these amplitudes emerge at one-loop level in

the YM theory without supersymmetry [14]. For instance, a one-loop all-plus amplitude reads

as

Aone−loop(+, . . . ,+) = gn
Y M

∑

1≤i1<i2<i3<i4≤n

〈i1, i2〉[i2, i3]〈i3, i4〉[i4, i1]

〈1, 2〉〈2, 3〉 . . . 〈n, 1〉
(2)

It was suggested in [1] that the conventional YM Feynman diagrams (in both supersym-

metric and non-supersymmetric gauge theories) can be reorganized in a different way as the

so-called MHV (or CSW) diagrams. The building blocks of this diagrammatics are MHV ver-

tices extended off-shell and the canonical propagator 1

P 2 involving (+−) degrees of freedom and

connecting two MHV vertices. The continuation off-shell suggested in [1] for λ in any internal

line reads as

λα = pα,α̇ηα̇ (3)

where η is arbitrary spinor fixed for off-shell lines in all diagrams relevant for a given amplitude.

1Here, we omit the colour factor and write down only a portion of the whole amplitude corresponding to a

particular colour-ordering of the external gluons.
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At higher loops the situation turns out to be more subtle at least in the theory without

supersymmetry. The non-vanishing all-plus one-loop amplitude cannot be derived from the

MHV vertices only. That is why it was suggested in [3] that the one-loop all-plus diagram has

to be added to the CSW Lagrangian as a new vertex. It was also argued that there is no need

to add one-loop vertex (−,+ . . . +) to new Lagrangian.

In spite of the considerable success of this approach its conceptual origin remained obscure

and it was unclear how these effective degrees of freedom involved into the CSW Lagrangian are

related with the conventional YM gauge fields. It is the goal of this paper to argue that these

effective degrees of freedom emerge from the standard YM variables in the light-cone gauge

upon the particular ”dressing ” procedure.

3 Light cone gauge formulation

In this Section we briefly discuss YM theory in the light-cone gauge which involves only two

physical degrees of freedom. The Lagrangian of YM theory in the light-cone variables has

been found in N=4 SUSY case [15, 16]. In what follows we shall exploit Mandelstam two-

field formulation [15] which has been successfully used recently in one-loop calculations in YM

theories with various amount of supersymmetry [17]. Two fields Φ+ and Φ− are related to the

physical transverse degrees of freedom of the gluon as follows

Φ−(x) = ∂−1
+ A(x), Φ+(x) = ∂+Ā(x) (4)

We shall be interested in the non-supersymmetric theory with the action in A+ = 0 gauge2

S =

∫

d4x[Φa
+2Φa

− + 2gfabc∂+Φa
−∂̄Φb

−Φc
+ + 2gfabc∂2

+Φa
−∂−2

+ ∂Φb
+∂−1

+ Φc
+

−2g2fabcfade∂−2
+ (∂+Φb

−Φc
+)(∂−1

+ Φd
+∂2

+Φe
−)] (5)

where ∂ = 1√
2
(∂x1

+ i∂x2
) is expressed in terms of the derivatives with respect to the transverse

coordinates x1, x2 and ∂̄ = ∂∗. The action contains local and non-local triple vertices as well as

non-local quartic vertex.

Let us make a few comments on the form of the action (5). First note that it involves

two fields of dimensions 0 and 2 hence positive and negative helicity fields enter Lagrangian

asymmetrically. In particular, vertex (− + +) is local in the coordinate space while (− − +)

is not. There are two classes of solutions to the equations of motion which correspond to the

2We shall understand everywhere the fields Φ+, Φ
−

as matrix valued fields except the formula for the action

below, which is written in terms of components Φa
+, Φa

−
with respect to a basis of matrices.
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self-duality and anti-self-duality equations written in a little bit unusual form, namely

Φ− = 0 2Φ+ + (Φ+,Φ+) = 0 (6)

and

Φ+ = 0 2Φ− + {Φ−,Φ−} = 0 (7)

where the schematically written r.h.s. are obtained by the variations of the cubic terms in the

action (5).

4 Self-dual solutions and tree level MHV amplitudes

Let us discuss the formula (1) for the MHV-amplitude in more detail. A generating functional

for the tree amplitudes can in general be described with help of a certain solution to the classical

field equations (we call it the perturbiner). In case we are going to consider mostly positive

helicity gluons on the external lines, we can reduce the general YM field equations to the self-

dual ones. The latter are of course much easier to solve. This fact has been recognized some time

ago by Bardeen [8] and has been elaborated further in [18, 19, 20, 9]. The shape of the relevant

self-dual solution will help us in finding a needed field transformation in the next section.

Let us briefly remind the derivation of the perturbiner solution to the self-duality equa-

tion following [9]. The self-dual perturbiner yields the form-factor of the one off-shell gluon

between the vacuum and arbitrary number of gluons of the same helicity, momenta pj and

color orientations tj. The starting point is the transition to the twistor representation with the

additional spinor homogeneous coordinate ρα on the auxiliary CP 1. The self-duality equation

in the twistor representation is equivalent to the zero-curvature condition

[∇α̇∇β̇
] = 0 (8)

where ∇α̇ = ρα∇α̇,α. Hence the solution to the self-duality equation can be represented in the

following form

Aα̇ = g−1∂α̇g (9)

where ∂α̇ = ρα∂α̇,α , Aα̇ = ραAα̇,α and g is group valued function depending on ρ and x, as

well as on the quantum numbers pj and tj of the external particles. Since both, Aα̇ and ∂α̇, are

linear in ρ, the function g has to be homogeneous (of zero degree) meromorphic function of ρ.

However, the singularities of g are constrained by the requirement that Aα̇ is regular.

The perturbiner is defined as a solution to the self-duality equation of the shape of a formal

expansion in the (non-commuting) variables Ej = tje
ipjx, which are essentially the plane waves
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of the external gluons of the same, say positive, helicity. Thus, we look for the group valued

function providing such a solution to the zero curvature equation in the form of an expansion

in plane waves:

gptb(ρ) = 1 +
∑

j

gj(ρ)Ej + . . . +
∑

j1...jL

gj1...jL
(ρ)Ej1 . . . EjL

+ . . . , (10)

where different terms with L of E’s correspond to different color orderings in the form-factors

with L external particles. The above constraints on the singular behavior of gptb(ρ) leads us

immediately to a unique solution, where

gj1...jL
(ρ) =

〈ρ, q〉

〈ρ, j1〉〈j1, j2〉〈j2, j3〉 . . . 〈jL−1, jL〉〈jL, q〉
(11)

where the so-called reference spinor qα is the one which enters into the polarization vectors

ε
j
α̇,α = qαλ̃

j
α̇.

The corresponding self-dual gauge field Aptb can be found upon the substitution of the

solution into (9). Let us note that perturbiner solution itself is localized on the line in the

twistor space if one performs half-Fourier transforms for all massless particles involved in the

form-factor similar to [13].

The perturbiner solution describes form-factor or off-shell current of the form 〈Aα̇,α(k)〉k1,...,kn

where the gluon with momentum k is off-shell while all other gluons are on-shell and have the

same helicity. Using the explicit form of the solution one can verify that this form-factor has no

pole in k2 and, hence, gives zero upon the application of the reduction formula. This corresponds

to the vanishing of the amplitude with all but one gluons of the same helicity.

To get the MHV amplitudes from the perturbiner solution one has to consider the linearized

YM equation in the background of the perturbiner. The most compact form of the generating

function for the tree level MHV amplitudes has the following structure [9]

M(k1, k2) = 〈1, 2〉2
∫

d4x tr[E1g
−1

ptbE2gptb] , (12)

where E1, k1, E2, k2 refer to the negative helicity gluons while the plane waves of the positive

helicity gluons are substituted into gptb. Recall that the group element gptb given in eq. (11)

depends on the twistor spinor variable ρ and the reference spinor q. In eq. (12), it is assumed

that one sets ρ = λ1 and q = λ2, where λ1, λ2 are “spinor momenta” corresponding to k1, k2

respectively. Then, upon a direct calculation of the left hand side of eq. (12), one recovers the

MHV-formula of eq. (1).

The group elements which depend on the twistor variable have to be taken at points ρi

corresponding to the momenta of negative helicity gluons.
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5 MHV variables

In the last section we described the generating function for certain tree amplitudes as a solution

of the self-duality equation. It means that we have a transformation F which takes a self-dual

solution of the linear wave equation (i.e. a sum of self-dual plane waves) as an input and produces

from it a solution of the non-linear self-duality equation. If we now continue the definition of

F from the plane wave solutions to arbitrary (i.e. off-shell) fields such a transformation must

link the linear free-field wave operator 2φ+ and the non-linear one appearing in the left hand

side of the second of eqs. (6). In more concrete terms it means that we are able to define a field

transformation

Φ+ = F (φ+) (13)

which obeys

2Φ+ + (Φ+,Φ+) = ∂+F ′(φ+, ∂−1
+ 2φ+) . (14)

Here, F ′ is the derivative of F (that is δF = F ′(φ, δφ)).

A formula for such a field transformation F is obtained if we perform an off-shell continuation

of the formulas of the last section in a way analogous to the one of ref. [1]. Explicitly, we define

Φ+ = F (φ+) = ∂2
+

∑

n≥1

1

∂+,1〈∂̄1 , ∂̄2〉 . . . ∂+,n

φ+...φ+
︸ ︷︷ ︸

n

, (15)

where ∂̄ = (ηα̇∂αα̇) and ∂̄k acts only on the k-th factor φ+ in the product. This expression for

the transformation F (φ) can also be written in terms of a group-valued function gptb(φ), which

is an analogously done off-shell continuation of gptb of the last section, as follows:

F (φ+) = ∂+(g−1

ptb(φ+)∂gptb(φ+)) . (16)

An important observation to make here is that the transformation (15) obeys the following

property:
∫

d4x tr[F ′(φ, u)∂−3
+ F ′(φ, v)] =

∫

d4x tr[u∂−3
+ v] , (17)

where u and v are arbitrary (matrix-valued) fields. This can be phrased as that F preserves a

symplectic form on the field space. However, the only proof of eq. (17) we know is achieved by

a straightforward algebra.

According to eq. (14), the shape of the transformation F is designed to kill the (++-) vertex

in the Lagrangian (5). On the other hand, the property (17) allows us to find also an appropriate

field redefinition in the “minus sector”, that is for the field Φ−. Indeed, if we want to express

Φ− in terms of the new variables φ+ and φ− we should require that the kinetic term retains its
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canonical form. Put together, the above means that we want the following equality:

∫

d4x trΦ−(2Φ+ + (Φ+,Φ+)) =

∫

d4x trφ−2φ+ , (18)

Let us define the remaining field transformation as

Φ− = ∂−4
+ F ′(φ+, ∂4

+φ−) (19)

Then, eqs. (14,17) show us immediately that the equality (18) does indeed hold. To prove that

the change of variables (15,19) brings the YM Lagrangian to the CSW form it remains to check

only the effect of our field redefinition on the interaction part of the Lagrangian. We have

indeed verified that the (+ − −) and (+ + −−) vertices in the light-cone YM Lagrangian (5)

get combined together to the correct interaction terms in the CSW Lagrangian. That is we

have proved that the change of variables yields at the tree level both the correct propagator and

the CSW vertices. The technical details concerning the change of variables shall be presented

elsewhere.

To conclude, let us comment on the one-loop extension of the CSW Lagrangian. As we have

already mentioned in the non-supersymmetric case it has to be extended by all-plus one-loop

amplitude. The possible origin of such correction is clear in our approach — this is the Jacobian

of the change of variables. We have not proved that the Jacobian reproduces the desired answer

but there are certain arguments favoring this possibility.

The work of A.G. was supported in part by grants CRDF RUP2-261-MO-04 and RFBR-06-

02-17382 and work of A.R. by grants RFBR-03-02-17554, NSch-1999.2003.2 and INTAS-03-51-
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