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Abstract

Gauss-Bonnet gravity provides one of the most promising frameworks to study curvature
corrections to the Einstein action in supersymmetric string theories, while avoiding ghosts
and keeping second order field equations. Although Schwarzschild-type solutions for Gauss-
Bonnet black holes have been known for long, the Kerr-Gauss-Bonnet metric was missing.
In this paper, a five dimensional Gauss-Bonnet solution is derived for spinning black holes
and the related thermodynamical properties are briefly outlined.

In any attempt to perturbatively quantize gravity as a field theory, higher-derivative inter-
actions must be included in the action. Such terms also arise in the effective low-energy action
of string theories. Furthermore, higher-derivative gravity theories are intrinsically attractive as
in many cases they display features of renormalizability and asymptotic freedom. Among such
approaches, Lovelock gravity [1] is especially interesting as the resulting equations of motion
contain no more than second derivatives of the metric, include the self interaction of gravitation,
and are free of ghosts when expanding around flat space. The four-derivative Gauss-Bonnet
term is most probably the dominant correction to the Einstein-Hilbert action [2] when consid-
ering the dimensionally extended Euler densities used in the Lovelock Lagrangian. The action
therefore reads as :

SGB =
1

16πG

∫

dDx
√
−g

[

R + α(RµναβRµναβ

−4RαβRαβ + R2)

]

, (1)

where α is a coupling constant of dimension (length)2, and G the D−dimensional Newton’s
constant defined as G = 1/MD−2

∗
in terms of the fundamental Planck scale M∗. Gauss-Bonnet

gravity was shown to exhibit a very rich phenomenology in cosmology (see, e.g., [3] and refer-
ences therein), high-energy physics (see, e.g., [4] and references therein) and black hole theory
(see, e.g., [5] and references therein). It also provides interesting solutions to the dark en-
ergy problem [6], offers a promising framework for inflation [7], allows useful modification of
the Randall-Sundrum model [8] and, of course, solves most divergences associated with the
endpoint of the Hawking evaporation process [9].

Either in D-dimensions or in 4-dimensions with a dilatonic coupling (required to make
the Gauss-Bonnet term dynamical), Gauss-Bonnet black holes and their rich thermodynami-
cal properties [10] have only been studied in the non-spinning (i.e. Schwarzschild-like) case.
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Although some general features can be derived in this framework, it remains mostly unrealis-
tic as both astrophysical black holes and microscopic black holes possibly formed at colliders
[11, 12, 13] are expected to be rotating (i.e. Kerr-like). Of course, the latter –which should
be copiously produced at the Large Hardon Collider if the Planck scale is in the TeV range
as predicted by some large extra-dimension models [14]– are especially interesting for Gauss-
Bonnet gravity as they could be observed in the high-curvature region of General Relativity
and allow a direct measurement of the related coupling constant [4]. The range of impact pa-
rameters corresponding to the formation of a non-rotating black hole being of zero measure,
the Schwarzschild or Schwarzschild-Gauss-Bonnet solutions are mostly irrelevant. This is also
of experimental importance as only a few quanta should be emitted by those light black holes,
evading the Gibbons [15] and Page [16] arguments usually used to neglect the angular momen-
tum of primordial black holes. To investigate the detailed properties of black holes in Lovelock
gravity, it is therefore mandatory to derive the general solution, i.e the metric for the spin-
ning case. Unlike the numerical attempts that were presented in [17] for degenerated angular
momenta, the present paper focuses on the exact solution in 5 dimensions. The asymptotic
behaviors are checked and the main thermodynamical properties are then briefly outlined.

Einstein equations in Gauss-Bonnet gravity with a cosmological constant Λ read as

Rµν −
1

2
gµνR = Λgµν + α

(

1

2
gµν

(

RµναβRµναβ

−4RαβRαβ + R2

)

− 2RRµν + 4RµγRγ
ν + 4RγδR

γδ
µν

−2RµγδλRγδλ
ν

)

, (2)

and the 5-dimensional metric in the spherically-symmertic Kerr-Schild type can be written
as

ds2 = dt2 − dr2 − (r2 + a2) sin2 θdφ2

1 − (r2 + b2) cos2 θdφ2

2

+b2) cos2 θdφ2

2 − ρ2dθ2 − 2dr

(

a sin2 θdφ1 + b cos2 θdφ2

)

−β

(

dt − dr − a sin2 θdφ1 − b cos2 θdφ2

)2

, (3)

where ρ2 = r2 + a2 cosθ +b2 sin2 θ and gtt = 1 − β.
The θθ component of Einstein equations reads :

Aβ′′ + Bβ′2 + Cβ′ + Dβ + E = 0

where

A = rρ2(4αβ − ρ2)

B = 4αrρ2

C = 2

[

4αβ(ρ2 − r2) − ρ2(ρ2 + r2)

]

D = 2r(2r2 − 3ρ2)

E = 2rΛρ4. (4)
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This equation can be splitted into 2 relations depending respectively only upon β and z ≡ ββ ′

as independent unknown functions. It it then possible to introduce a few function f(r, c) where
c = a2 cosθ +b2 sin2 θ so that the equations are equivalent to to the following system :

β′′ + 2(
ρ2 + r2

rρ2
β′ −

2r2 − 3ρ2

ρ4
β − Λ) −

f(r, c)

rρ4
= 0 (5)

z′ + 2
ρ2 − r2

rρ2
z −

1

2

f(r, c)

αrρ2
= 0 (6)

Introducing the new function p(r, c) via the transformation

f(r, c) =
ρ4

r

∂p(r, c)

∂r
, (7)

the second equation can easily be solved (with pr ≡ ∂p(r, c)/∂r), leading to :

z =
1

2

(
∫

prdr + 2C21α)(r2 + c2)

αr2
= (ββ′), (8)

where Ci are constants of integration. This equation can integrated to obtain :

β2 =
1

α

∫

(

p
r2 + c2

r2

)

dr + 2C21

r2 − c2

r
+ C20. (9)

The first equation can also be easily solved, which results in

β = (C12r − C11(r
2 − c2) − r

∫

(pr − 2r2Λ)(r2 − c2)

r
dr

+ (r2 + c2)

∫

(pr + 2Λr2)dr)
1

r(r2 + c2)
(10)

where a simple integration by parts

∫

pr
r2 − c2

r
dr = p

r2 − c2

r
−
∫

p
r2 + c2

r2
dr (11)

leads to :

βr(r2 + c2) = c12r + C11(r
2 − c2) + r

∫

(

p
r2 + c2

r2

)

dr

+
Λr3

6
(r2 + c2). (12)

As the same integral combination

Q =

∫

(

p
r2 + c2

r2

)

dr (13)

is involved, this can be transformed to 2 algebraic equations :

βr(r2 + c2) = c12r + C11(r
2 − c2) + rQ

+
Λr3

6
(r2 + c2) (14)

αβ2r = rQ + 2C21(r
2 − c2) + C20r. (15)
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This system leads to the quadratic equation

αβ2 − (r2 + c2)β +

(

C32 + C31

r2 − c2

r
+

Λr2

6
(r2 + 2c2)

)

= 0 (16)

where C3i are new integration constants obtained from combination of C2i and C1i.
Taking into account the asymptotes at infinity (and therefore finding the values of the

integration constants, M being the ADM mass), this leads to

β =
ρ2 ±

√

ρ4 − 4αM − 2

3
αΛr2(ρ2 − r2)

2α
(17)

where the “-” branch should be chosen so as to recover the usual Kerr solution in the limit
α → 0.

If, as suggested by geometrical arguments and by low-energy effective superstring theories,
Gauss-Bonnet gravity is a realistic path toward a full quantum theory of gravity, then Kerr-
Gauss-Bonnet black holes are probably among the most important objects to understand the
physical basis of our World. This article has established the solution of Einstein equations in
5-dimensional Gauss-Bonnet. This allows to investigate into the details the physics of ”realis-
tic” spinning black holes, both from a pure theoretical and from a phenomenological (in the
framework of low Planck-scale models) viewpoint.

Some improvements and developments can be foreseen. First, it should be very welcome
to obtain the same kind of solutions for any number of dimensions. Unfortunately the method
introduced in this article is not easy to generalize and a specific study should be made for
each case. Then, it would be interesting to compute the greybody factors for those black
holes. Following the techniques of [19], it is possible (although not straitforward) to obtain a
numerical solution as soon as the metric is known, at least in the Λ = 0 case. The Kerr-Gauss-
Bonnet-(Anti)-de-Sitter situation is more intricate as the metric is nowhere flat, requiring a
more detailed investigation, as suggested in [20].
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