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Abstract

We explore a possibility for the Universe to cross the w = −1 cosmological constant
barrier for the Dark Energy state parameter. Exact solutions to the Friedmann equations
with a string inspired phantom field are constructed. The Universe is considered as a slowly
decaying D3-brane, which is described in the string field theory (SFT) framework. The
D3-brane dynamics is approximately described by a nonlocal string tachyon interaction and
the back reaction of gravity is incorporated in the closed string tachyon dynamics. In a local
effective approximation this model contains one phantom component and one usual scalar
field.

1 Introduction

Nowadays strings and D-branes theories have found cosmological applications related with the
acceleration of the Universe. The combined analysis of the type Ia supernovae, galaxy clusters
measurements and WMAP (Wilkinson Microwave Anisotropy Probe) data brings out clearly an
evidence for the accelerated cosmic expansion [1, 2, 3]. The cosmological acceleration strongly
indicates that the present day Universe is dominated by a smoothly distributed slowly varying
cosmic fluid with negative pressure, the so-called dark energy (DE), see [4] and references
therein.

To specify a component of a cosmic fluid one usually uses a phenomenological relation
between the pressure p and the energy density % corresponding to each component of fluid
p = w%, where w is the equation-of-state parameter or, for short, the state parameter. We
denote as wDE the component with negative w, which corresponds to the DE. Contemporary
experiments, including WMAP [3], give strong support that currently the state parameter is
close to −1:

wDE = − 1 ± 0.1. (1)

From the theoretical point of view this domain of wDE covers three essentially different cases:
wDE > −1, wDE = −1 and wDE < −1 (see [5] and references therein). Since from the obser-
vations there is no barrier between these three possibilities it is interesting to consider models,
where these three cases are realized. Under general assumptions it is proved in [6] that within
single scalar field models one can realize only one possibility: wDE > −1 (quintessence models)
or wDE 6 −1 (phantom models). It is interesting that the interaction with the Cold Dark
Matter does not change the situation and does not remove the cosmological constant barrier
[6, 7]. There are several phenomenological models describing the crossing of the cosmological
constant barrier [8]. Most of them use more then one scalar field or use a non-minimal coupling
with gravity, or modified gravity, in particular via brane-world scenarios. In two-field models
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one of these two fields is a phantom and the other one is an usual field and the interaction is
nonpolynomial in general.

The most exciting possibility would be the case wDE < −1 corresponding to the so called
phantom dominated Universe. In phenomenological models describing this case the weak energy
condition % + p > 0 is violated and there are problems with stability at classical and quantum
levels. Possible way to evade the instability problem for models with wDE < −1 is to yield a
phantom model as an effective one, which arises from more fundamental theory with normal
kinetic term. In particular, if we consider a model with higher derivatives such as φe−�φ, then
in the first nontrivial approximation, φe−�φ ' φ2−φ�φ, and such a model gives a kinetic term
with a ghost sign. It turns out, that such a possibility does appear in the string field theory
framework [4] (see also [9]). This model is close in some approximation to a model arising in
the string theory, namely in the theory of fermionic NSR string with GSO− sector. According
to Sen’s conjecture (see [10] for review), the scalar field φ is an open string theory tachyon,
describing the brane decay. Since the concerned model is a string theory approximation, all
stability problems related to a model with higher derivatives are discarded.

2 Action and Equations of Motion

We consider a model of Einstein gravity interacting with a single phantom scalar field φ and
one standard scalar field ξ in the spatially flat Friedmann Universe. Since these scalar fields are
assumed to come from string field theory the string mass Ms and a dimensionless open string
coupling constant go emerges. In typical cases phantom represents the open string tachyon and
the usual scalar field corresponds to the closed string tachyon [4, 11, 12]. The action is

S =

∫

d4x
√−g

(

M2
P

2M2
s

R +
1

g2
o

(

+
1

2
gµν∂µφ∂νφ − 1

2
gµν∂µξ∂νξ − V (φ, ξ)

))

, (2)

where MP is the reduced Planck mass, gµν is a spatially flat Friedmann metric

ds2 = − dt2 + a2(t)
(

dx2
1 + dx2

2 + dx2
3

)

.

The coordinates (t, xi) and fields φ and ξ are dimensionless. Hereafter we use the dimensionless
parameter mp for short:

m2
p =

g2
oM

2
P

M2
s

. (3)

If the scalar fields depend only on time then the equations of motion are as follows

H2 =
1

3m2
p

(

− 1

2
φ̇2 +

1

2
ξ̇2 + V

)

, (4a)

Ḣ =
1

2m2
p

(

φ̇2 − ξ̇2
)

, (4b)

φ̈ + 3Hφ̇ =
∂V

∂φ
, (4c)

ξ̈ + 3Hξ̇ = − ∂V

∂ξ
. (4d)

Here dot denotes the time derivative and H ≡ ȧ(t)/a(t). Note that of four differential equations
(4a)–(4d) only three are independent.

The DE state parameter can be expressed in terms of the Hubble parameter:

wDE = −1 − 2

3

Ḣ

H2
. (5)
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The crossing of the cosmological constant barrier wDE = −1 corresponds to change of sign
of Ḣ. The phantom like behavior corresponds to an increasing Hubble parameter. If we know
the Hubble parameter as a function of time we can calculate the state parameter wDE without
knowledge of potential. It follows from eq. (4b) that if we know the explicit form of fields φ(t)
and ξ(t) and do not know the potential V (φ, ξ), we can obtain H(t) with accuracy to a constant:

H(t) =
1

2m2
p





t
∫

φ̇2(τ)dτ −
t
∫

ξ̇2(τ)dτ



+ C. (6)

The form of the potential is assumed to be given from string field theory within the level
truncation scheme. Usually for a finite order truncation the potential is a polynomial and its
particular form depends on the string type. Level truncated cubic OSFT fixes the form of the
interaction of local fields to be a cubic polynomial with non-local form-factors. Integrating out
low lying auxiliary fields one gets a 4-th degree polynomial [13, 14]. Higher order auxiliary fields
may change the coefficients in front of lower terms and produce higher degree polynomials. The
Aref’eva DE model [4] assumes that our Universe is a slowly decaying D3-brane and its dynamics
is described by the open string tachyon mode and the back reaction of this brane is incorporated
in the dynamics of the closed string tachyon. The open string tachyon dynamics is described
within a level truncated open string field theory (OSFT). The notable feature of this OSFT
description of the tachyon dynamics is a non-local polynomial interaction [10, 13, 14, 15, 16, 17].
It turns out the open string tachyon behavior is effectively described by a scalar field with a
negative kinetic term [18].

The scalar field ξ comes from the closed string sector, similar to [19] and its effective local
description is given by an ordinary kinetic term [11] and, generally speaking, a non-polynomial
self-interaction [20]. An exact form of the open-closed tachyon interaction is not known and we
consider the simplest polynomial interaction.

From the string theory we can also assume asymptotic conditions for solutions. To specify
the boundary conditions for scalar fields let us recall that we have in mind the following picture.
We assume that the phantom field φ smoothly rolls from the unstable perturbative vacuum
(φ = 0) to a nonperturbative one, say, φ = 1 and stops there. The field ξ corresponds to
close string and is expected to asymptotically go to zero in the infinite future. At the same
time we can not calculate in the string theory framework coefficients of the potential and the
explicit form of solutions. In this paper we show how using the superpotential method one can
construct a polynomial potential and exact solutions, which satisfy conditions obtaining in the
string theory framework.

Another interesting problem is to find a form of potential and solutions for the given Hubble
parameter as a function of time. In this paper we construct toy two-fields model for the
Hubble parameter proposed by I.Ya. Aref’eva and A.S. Koshelev [9]. This Hubble parameter
corresponds to the DE state parameter, which crosses the cosmological constant barrier infinite
number of times.

The existence of a superpotential puts restrictions on the form of the potential. For poly-
nomial potentials these restrictions give relations among coefficients. In this polynomial case
we can estimate the behavior of DE state parameter at large times.

3 The Method of Superpotential

We can assume that H(t) is a function (named a superpotential [21]) of φ(t) and ξ(t):

H(t) = W (φ(t), ξ(t)).
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This allows us to rewrite (4b) as

∂W

∂φ
φ̇ +

∂W

∂ξ
ξ̇ =

1

2m2
p

(

φ̇2 − ξ̇2
)

. (7)

System (4) is solved provided the relations

∂W

∂φ
=

1

2m2
p

φ̇,
∂W

∂ξ
= − 1

2m2
p

ξ̇ (8)

are satisfied. If this is the case we have the following relation between the potential V and the
superpotential W

V = 3m2
pW

2 + 2m4
p

(

(

∂W

∂φ

)2

−
(

∂W

∂ξ

)2
)

. (9)

This relation gives the potential in terms of W and its first derivatives with respect to φ
and ξ. Provided the superpotential is given to find a solution of the dynamical system one has
to solve the second order system of ordinary differential equations (8).

There are a few ways to use the superpotential method. The standard way [21] is to construct
the potential for the solutions given in the explicit form. Note that in distinct of the case of
models with one scalar field in two-fields models we can choose a form of the potential V (φ, ξ).
At the same time there exist potentials, which do not correspond to any superpotential. In two
fields models the superpotential method gives possibility to find new solutions.

Another way to use the superpotential method is to construct potential and solutions using
some properties of them. In particular we will try to find explicit form of solutions with given
asymptotic conditions. The superpotential method can be useful also to find solutions and
potential, which correspond to given behavior of the Hubble parameter.

The existence of a superpotential puts restrictions on the form of the potential. For polyno-
mial potentials these restrictions give relations among coefficients. In this polynomial case we
can estimate the behavior of DE state parameter at large times. We demonstrate that potential
obtained by the superpotential method can be changed without changing of the given explicit
solutions.

The superpotentials under consideration produce potentials which are rather close to the
form of the open-closed tachyon potential for a non-BPS brane. Indeed, within the level trun-
cated string field theory description of a non-BPS D3-brane decay both fields have tachyon
mass terms and the interaction is the fourth order polynomial at the lowest levels. A natural
deformation of this form of the open-closed string tachyon potential is given by extra sixth order
terms. In a non-flat background there is a deformation of the effective local model describing
the pure open sector of a non-BPS D3-brane such that the corresponding Friedmann equations
have exact solutions [5]. A more straightforward generalization of the model [5] to the case
of two fields gives a model with a kink-lump solution. We consider such solutions in the next
section.

4 The construction of potential for quintessence and phantom

late time behaviors

To demonstrate how we construct potential V (φ, ξ), which corresponds to the given explicit
solutions, let us consider the following kink-lump solution:

φ(t) = tanh(t) and ξ(t) =

√

2(1 + b)/ω

cosh(ωt)
. (10)
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where b and ω are arbitrary constants. From (6) we obtain

H(t) =
1

6m2
p

(

3 tanh(t) − tanh3(t) − 2(1 + b) tanh3(ωt)
)

. (11)

The corresponding DE state parameter wDE is given by

wDE = −1−4m2
p

3 − 3 tanh(t)2 − 3 tanh(t)2(1 − tanh(t)2) − 6(1 + b)ω tanh(ωt)2(1 − tanh(ωt)2)

(3 tanh(t) − tanh(t)3 − 2(1 + b) tanh(ωt)3)2

The behavior of the Hubble parameter at large time depends on the parameter b. From
the contemporary experimental data it follows that the present date Universe is expanding one
that corresponds to lim

t=∞

H > 0. This condition is equivalent to b < 0. On the other hand, in

the past there was eras of the accelerated and decelerated expanding Universe, it means that
the Hubble parameter H has to be not a monotonic function and should has an extremum at
some point tc > 0.

Let ω = 1, then from (11) we obtain that

tc = arccosh

(

±
√

2(b + 1)(2b + 3)

2(b + 1)

)

. (12)

From the condition tc is a real positive number we obtain the restriction b > −1. Eventually,
we state that −1 < b < 0. For these values of b the Hubble parameter H has one extremum,
namely a maximum. It is easy to show that at the large time wDE > −1 for ω = 1 and b > −1,
so we obtain the quintessence like behavior of the Universe.

To obtain the suitable (nonmonotone) Hubble parameter H with the phantom like behavior
at the large time (wDE < −1) we should choose ω 6= 1 and the corresponding value of b. In
particulary, if ω = 2 and b = −0.01 then H(t) has extrema in the points t̃c1 = 0.3071060782
and t̃c2 = 2.990691130.

For ω = 2 we obtain

w̃DE ≡ wDE |ω=2 = − 1 + 6
(

2 cosh2(t) − 1
)2 ×

×
(

16b cosh8(t) + 16(1 − b) cosh6(t) − 24 cosh4(t) + 8 cosh2(t) − 1
)

tanh2(t)
(

16b cosh8(t) − 16b cosh6(t) − 4 cosh2(t) + 1
)2 .

The DE state parameter w̃DE has a singularity in the origin and behaves as −1/t2. At the
points t̃c1 and t̃c2 its value crosses −1.

Using the condition b < 0, we find that at late time

w̃DE ≈ − 1 +
3

2b cosh4(t)
< −1.

Thus, we have constructed both a phantom-like (wDE goes to -1 from below) model and a
quintessence-like (wDE goes to -1 from above) model.

Let us construct potential, which corresponds to fields (10). The functions φ and ξ are
solutions of the following differential equations:

φ̇ = 1 − φ2, ξ̇ = ωξ

√

1 − ξ2

B2
, (13)

where we introduce new variable B ≡
√

2(1 + b)/ω for short.
So, we can put

∂W

∂φ
=

1

2m2
p

(

1 − φ2
)

,
∂W

∂ξ
= − ωξ

2m2
pB

√

B2 − ξ2 (14)
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and obtain:

H ≡ W =
1

2m2
p

(

φ − 1

3
φ3 − ω

3B

√

(B2 − ξ2)3
)

+ C, (15)

where C is an arbitrary constant. Different values of C correspond to different V (φ, ξ). In the
case C = 0 from (9) we obtain

V =
1

2

(

1 − φ2
)2 − ω2

2B2
(B2 − ξ2)ξ2 +

3

4m2
p

(

φ − 1

3
φ3 − ω

3B

√

(B2 − ξ2)3
)2

. (16)

In the case of one field if we know the (phantom) scalar field in the explicit form then we
know the superpotential with accuracy to a constant. In the case of two fields we can construct
essentially different form of superpotential. Moreover, it is significant that we can construct
new potential with the same special solutions without construction of new superpotential. For
example, if ω = 1, then the functions (10) satisfy not only system (13) but also the following
system of differential equations:

φ̇ = b
(

φ2 − 1
)

+
1

2
ξ2(t), ξ̇(t) = − φ(t)ξ(t). (17)

The corresponding superpotential and potential are given by

W̃ = − φ

6m2
p

(

b
(

3 − φ2
)

− 3

2
ξ2
)

, (18)

Ṽ =
1

2

(

b
(

φ2 − 1
)

+
1

2
ξ2

)2

− 1

2
φ2ξ2 +

φ2

12m2
p

(

b
(

3 − φ2
)

− 3

2
ξ2

)2

. (19)

This example shows that the same functions φ(t), ξ(t) (and consequently the Hubble param-
eter H(t), state parameter wDE and deceleration parameter q(t)) can correspond to different
potentials V (φ, ξ). So, we conclude that one has a freedom to choose the potential, without
changing solutions. Moreover, the solution is not violated if we add to the potential Ṽ (or V
with ω = 1) a function δV , which is such that δV , ∂(δV )/∂φ and ∂(δV )/∂ξ are zero on the
solution. For example, we can add

δV = A(ξ, φ)

[

φ2 +
1

B2
ξ2 − 1

]2

, (20)

where A(ξ, φ) is a smooth function. So, we can obtain potential, which corresponds to exact
solutions, but does not correspond to any superpotential.

Note that the superpotential method does not allow to find all possible variants of polynomial
potentials. Note that superpotential (15), which can be separated on two summand

W (φ, ξ) = W1(φ) + W2(ξ), (21)

does not generate the potential

V (φ, ξ) = V1(φ) + V2(ξ), (22)

Such potential can be constructed by the following algorithm:

• From equation (4b) we obtain Ḣ(t) and, therefore, H(t).

• Substituting the obtained value of H(t) in (4c) and (4d), we obtain ∂V
∂φ and ∂V

∂ξ as functions
of t.

• Using condition ∂2V
∂φ∂ξ = ∂2V

∂ξ∂φ , we guess the form of V (φ, ξ).
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• From (4a) we define the constant term in the potential V .

Using this method we have found an another polynomial form of the potential, which cor-
responds to solutions (10) with ω = 1:

V̆ (φ, ξ) =

(

1

4M2
p

− 1

)

ξ2φ2 +
1

2M2
p

φ2ξ4 +
1

2
ξ2 − 1

4M2
p

ξ4 +
1

6M2
p

ξ6 + C. (23)

5 Construction of new solutions via superpotential method

In previous section we have shown how we can choose potential for given solutions. In this
section we demonstrate the possibility to find new exact solutions (may be in quadratures)
using superpotential method. Let us solve system (13). The general two-parameter solutions
has the form:

φ = tanh(t − t0), and ξ(t) =

√

2(1 + b)/ω

cosh(ω(t − t1))
, (24)

where t0 and t1 are arbitrary numbers. Note that t0 and t1 are complex numbers, therefore,
solutions (24) include in particular the function φ = coth(t). System (13) gives us only solutions,
which are trivial generalization of the initial solutions (10). System (17) has solutions (10) with
ω = 1, the solution

φ(t) = − tanh(b(t − t0)), ξ(t) = 0 (25)

and the following solution:

φ(t) = − ξ̇(t)

ξ(t)
, (26)

and ξ(t) is defined in quadratures

t − t1 = ±
∫

√
2ξb(1 + b)dξ

ξ((1 + b)(2(ξb)2 + 2b(ξb)2 + (ξb)2ξ2 + 2C1 + 2C1b))1/2
, (27)

where C1 and t1 are arbitrary constants.
We can conclude that in case of two fields we start with some explicit solutions, construct

the potential and obtain new solutions to equations of motion with this potential.

6 Construction of a string inspired potential and exact solutions

The form of the potential is assumed to be given from string field theory within the level
truncation scheme. In the present analysis we impose the following restriction on the potential:

• the potential is the sixth degree polynomial:

V (φ, ξ) =
6
∑

k=0

6−k
∑

j=0

ckjφ
kξj, (28)

• coefficient in front of 5-th and 6-th powers are of order 1/m2
p and the limit m2

p → ∞ gives
a nontrivial 4-th degree potential.

• the potential is even: V (φ, ξ) = V (−φ,−ξ). It means that if k + j is odd, then ckj = 0.

• the function φ(t) has non-zero asymptotic and ξ(t) has zero asymptotic as t → +∞.

7



We also assume that there exists a polynomial superpotential W (φ, ξ), which determines
the potential V (φ, ξ) by formula (9).

To construct the sixth degree polynomial potential V (φ, ξ) we should choose W (φ, ξ) as
a third degree polynomial. If all coefficients of W (φ, ξ) are proportional to 1/m2

p, then we
obtain that solution does not depend on m2

p, and coefficient in front of 5-th and 6-th powers are
proportional to 1/m2

p. To obtain an even potential V (φ, ξ) we should use an odd superpotential
W (φ, ξ). So, the suitable form of superpotential is as follows:

W (φ, ξ) =
1

2m2
p

(

a1,0φ + a3,0φ
3 + a0,1ξ + a0,3ξ

3 + a2,1φ
2ξ + a1,2φξ2

)

, (29)

where ai,j are constants, which do not depend on m2
p. The corresponding system of differential

equations (8) is as follows:

φ̇ = a1,0 + 3a3,0φ
2 + 2a2,1φξ + a1,2ξ

2,

ξ̇ = − a0,1 − 3a0,3ξ
2 − a2,1φ

2 − 2a1,2φξ.
(30)

Using asymptotic conditions: φ(+∞) = 1, ξ(+∞) = 0, φ̇(+∞) = ξ̇(+∞) = 0 we obtain

a1,0 = −3a3,0, a0,1 = −a2,1. (31)

So, we obtain the following system of equations:

φ̇ = − 3a3,0 + 3a3,0φ
2 + 2a2,1φξ + a1,2ξ

2,

ξ̇ = a2,1 − 3a0,3ξ
2 − a2,1φ

2 − 2a1,2φξ.
(32)

Using (32) we can express ξ(t) via φ(t) and its derivatives:

ξ =
1

2a1,2(3a0,3 − a2,1)φ̇ − 2a2,1a2
1,2 + 18a0,3a3,0a1,2 + 2(a0,3(6a2

2,1 − 9a1,2a3,0) − a2,1a2
1,2)φ

2
×

×
[

(6a1,2a3,0 + 6a0,3a2,1 − 4a2
1,2)φφ̇ − a1,2φ̈ + (18a0,3a3,0a2,1 + 2a2

2,1a1,2 − 12a2
1,2a3,0)φ −

−(2a1,2a
2
2,1 − 18a0,3a2,1a3,0 + 12a2

1,2a3,0)φ
3
]

.

At the same time we can not solve the obtained differential equation for φ(t) without additional
assumptions. Really we should fix one of four arbitrary coefficients of the superpotential. The
simplest way to do this is to assume explicit form of some combination of functions φ and ξ.
For example, let us assume that

φ(t) + sξ(t) = tanh(ωt), (33)

where s and ω are constants. From (33) we obtain

φ̇(t) + sξ̇(t) = ω
(

1 − (φ(t) + sξ(t))2
)

. (34)

It gives the following restrictions on the coefficients ai,j:

a3,0 =
3a2,1a0,3 + a2

2,1 − a2
1,2

3a1,2
. (35)

Parameters s and ω are determined by coefficients of W :

ω = a1,2

3a0,3 − a2,1 ±
√

9a2
0,3 + 6a2,1a0,3 + a2

2,1 − 4a2
1,2

3a0,3 + a2,1 ∓
√

9a2
0,3 + 6a2,1a0,3 + a2

2,1 − 4a2
1,2

, (36)
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s =
3a0,3 + a2,1 ±

√

9a2
0,3 + 6a2,1a0,3 + a2

2,1 − 4a2
1,2

2a1,2
. (37)

Choosing s one can find exact solutions and analyse the corresponding cosmological conse-
quences. The case s = 1 has been considered in [22]. In this case

a3,0 =
2

3
a2,1 −

1

3
a1,2, a0,3 = − 1

3
a2,1 +

2

3
a1,2, ω = a1,2 − a2,1, (38)

and system (33) has the following solutions:

ξ(t) = (a2,1t − C1)
(

tanh(ω(t − t0))
2 − 1

)

, (39)

φ = tanh(ω(t − t0)) − (a2,1t − C1)
(

tanh(ω(t − t0))
2 − 1

)

. (40)

The behavior of the solution depends on the particular values of parameters a2,1, t0 and C1.
It is possible to find particular values of the parameters for which the Hubble parameters H
has two extrema and wDE < −1 at late time [22].

For s = 2 and s = 3 we obtain the following solutions:

ξ2(t) =
4(e2(2a2,1−a1,2)t − C1e

(a2,1−2a1,2)t)

3(C1 + e2(2a2,1−a1,2)t)(e(a2,1−2a1,2)t + 1)
. (41)

ξ3(t) =
3(−e2(a1,2−3a2,1)t + C1e

2(3a1,2−a2,1)t/3)

4(C1 + e2(a1,2−3a2,1)t)(e2(3a1,2−a2,1)t/3 + 1)
. (42)

We can conclude that the superpotential method allows to find exact solutions with the
given asymptotic properties which correspond to polynomial potential.

7 Two-fields Model with infinity number of the cosmological

barrier crossing

From the Cubic Superstring Field Theory I.Ya. Aref’eva and A.S. Koshelev [9] have obtained
the model with the following Hubble parameter:

H = H0 + CHe−2rt sin(2ν(t − t0)), (43)

where H0, CH , r, ν and t0 are real constants. Let us construct the two-fields model with the
Hubble parameter H in the case ν = r. To consider solutions, which do not depend on m2

p, we
put CH = 1/(2m2

p). In this case

Ḣ = − 2r

2m2
p

e−2rt(sin(2rt) − cos(2rt)) =
r

m2
p

e−2rt
(

2 sin(rt)2 − (sin(rt) − cos(rt))2
)

. (44)

Using (4b) we can define the following explicit form of solutions:

φ̇ = − 2
√

re−rt sin(rt), ξ̇ =
√

2re−rt(sin(rt) − cos(rt)). (45)

So,

φ =
1√
r
e−rt

(

cos(rt) + sin(rt)
)

, ξ = −
√

2√
r
e−rt sin(rt). (46)

It is easy to check that

φ̇ =
√

2rξ, ξ̇ = −
√

2rφ + 2rξ. (47)
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Let construct the superpotential:

∂W

∂φ
=

1

2m2
p

√
2rξ,

∂W

∂ξ
=

1

2m2
p

(√
2rφ − 2rξ

)

, (48)

so,

W =
1

2m2
p

(√
2rξφ − rξ2

)

+ H0. (49)

And the potential is (H0 = 0)

V = −r2
(

ξ2 + φ2 − 2
√

2φξ
)

+
3r2

4m2
p

(√
2ξφ − ξ2

)2
. (50)

So, we obtain the explicit solutions and polynomial potential, which correspond to the Hubble
parameter from the string inspired model with high derivatives.

8 Conclusions

In this paper we have investigated the dynamics of two component DE models, with one phan-
tom field and one usual field. The main motivation for us was a model of the Universe as a
slowly decaying D3-brane whose dynamics is described by a tachyon field [4]. To take into
account the back reaction of gravity we consider one more scalar field. This scalar field has a
usual kinetic term.

Within two component DE models with a general class of interactions we have found con-
ditions that show whether the model is a phantom-like (wDE goes to −1 from below), or it is a
quintessence-like (wDE goes to −1 from above). In particular, for the simplest model inspired
by a D3-brane we have found that an inclusion of the closed string tachyon drastically changes
the late time regime so for the two-component model we have wDE > −1 at large time, while
in the open string case one has wDE < −1.

We have also constructed the two fields model with wDE < −1 at late times. We have
presented the explicit solution implementing this possibility: φ = tanh(t) and ξ ∼ 1/ cosh(2t).
The corresponding potential can be separated on the forth degree polynomial and gravitational
correction which is not a polynomial. In other models gravitational correction is the sixth
degree polynomial, the explicit form of open string tachyon is a type of kink, but more complex
then tanh(t). It would be very interesting to find such the lump type field ξ that wDE < −1 at
late times, φ = tanh(t) and the corresponding potential is an even polynomial.

We construct two-fields model with the fourth degree polynomial potential, which corre-
sponds to the Hubble parameter, obtained in the string field theory framework [9].

In this paper we actively have used the superpotential method and have shown that there
are new variants to use this method in the case of two fields. We can not only to construct
potential for the given solutions, but also to find new solutions.
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