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Abstract

There is given a short overview of gauge-invariant formalism which was developed in [1][2][4].
Equivalency of hydrodynamical and field approach is shown.

1 Introduction

The problem of considering cosmological perturbations within the scope of General Relativity
has been treated since the classical work [10]. While considering perturbations one uses a certain
gauge, e.g. synchronous (g00 = 1, goi = 0) or comoving (where the energy flux vanishes), but
the spirit of GR where all reference frames are equivalent enforces us to show the transformation
from one gauge to another. And these transformation formulae may be ambiguous. For example,
transformation to synchronous gauge contains two integration constants. This ambiguity reflects
the general fact that splitting of cosmological quantities (the metric tensor, scalar field, energy
density etc.) into background and perturbation part in an arbitrary gauge is not unique. It
can cause appearing of unphysical perturbation modes which does not affect physical quantities
at all. One of the ways to solve it is constructing and working only with gauge-invariant
variables [1][2][4].

Equation which describes the evolution of a gauge-invariant variable comes from the per-
turbed part of Einstein equations. Clearly, Einstein equations solely are insufficient, because
perturbations of both the metric tensor and the energy-momentum tensor can be written in
a general form without specifying any physics. In order to obtain a dynamical equation we
need a physical relation. For example, it can be a relation between energy density and pressure
perturbations which corresponds to the hydrodynamical approach. Also we can start from a
general Lagrangian of ϕ-field (which serves as a 3-velocity potential), and this corresponds to
the field approach. The former is usually associated with equation of state, while the latter is
with models of inflation. We show that both approaches are equivalent.

The plan of the paper is as follows. In Sec. 2 there is given a short review of gauge-invariant
formalism, in Sec. 3 it is shown equivalency of the hydrodynamical and field approaches. In
Sec. 4 we relate different gauge-invariant variables which are used most often.

2 An overview of gauge-invariant language

Below we work with the background Fridmann-Robertson-Walker metric:

ds2 = dt2 − a2dxidxi = a2(dη2
− dxidxi). (1)
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The background 4-velocity is uµ = (1, 0, 0, 0), speed of light c = 1, and η is conformal
time, dη = dt/a.

The basic equations we need below are the Fridmann equations:

H2 =
8πG

3
ε, (2)

γ ≡ −
Ḣ

H2
=

3

2

(

1 +
p

ε

)

, (3)

where H = ȧ/a, a is the scale factor, and G is the gravitational constant. The dot and the prime
stand for the derivative with respect to physical time t and conformal time η, respectively.

Generally, scalar type metric perturbations are constructed using four ”potentials” [5]: A, B, C
and D:

hµν =

(

2D aC,i

aC,i 2a2(Aδij + B,ij)

)

. (4)

The potential A is actually a perturbation of the scale factor: A = −δa/a.
The perturbation of the energy-momentum tensor looks as follows:

δT 0
0 = δε,

δT 0
i = (ε + p)υ,i,

−δT i
j = δpδij + (ε + p)σij,

(5)

σij = (aH)−2(E,ij −4Eδij), σj
i,j = 0,

where υ is the 3-velocity potential (ui = υ,i), uµ = (1, ui), and E presents anisotropic stresses.
Thus, we have four gravitational potentials A, B, C, D and four matter potentials υ, δε, δp, E.

All of them but E are not gauge-invariant. By small coordinate transformations xµ → xµ + ξµ

the potentials get changed. Two of these eight potentials are arbitrary. It corresponds to a
gauge choice (an arbitrary vector in scalar representation ξµ = Fuµ +H,µ). It is possible to con-
struct some gauge-invariant combinations of the potentials. All such combinations constitute
an infinite set.

The potentials A, B, C, D, υ, δε, δp, E are not independent. They are linked through the
first-order expansion of the Einstein equations

δGµ
ν = 8πGδT µ

ν . (6)

The natural gauge-invariant combination is that of the gravitational potential A and the
velocity potential υ which is called the q-scalar [1]:

q = A + Hυ. (7)

The inverse transformations of the q-field to the original potentials are as follows:

υ =
q − A

H
, δpc ≡ δp − ṗυ =

ε + p

H
q̇, (8)

aḂ − C =
A − ΦH

aH
, D = γq −

d

dt

(

A

H

)

, (9)

δεc ≡ δε − ε̇υ =
4ΦH

4πGa2
, ΦH =

H

a

∫

aγ(q + 2E)dt, (10)

where δpc and δεc are gauge-invariant variables which coincide with pressure and energy density
perturbation in the comoving reference frame, respectively. The first equation in (10) is, in fact,
the relativistic Poisson equation. From the inverse transformations it can explicitly be seen
that E is a gauge-invariant potential. The potential ΦH was firstly introduced by Bardeen [2].
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3 Introducing dynamics

The previous analysis is common and does not depend on any concrete physics. However,
in order to introduce dynamics we need some additional relation, e.g. between δpc and δεc,
that is, we need to specify some physics. We have two possibilities: either we can use the
hydrodynamical approach to relate δpc and δεc or the field approach, i.e. to admit some form
of the Lagrangian. Further it is shown that the both approaches are equivalent in this problem.
Further on we suppose absence of anisotropic stresses, therefore,

E = 0,

ΦH =
H

a

∫

aγqdt.
(11)

Hydrodynamical approach. In the hydrodynamical approach we assume

δpc = β2(t)δεc, (12)

where β(t) is a function of time. Hence from (8) and (3),

δεc = α2Hq̇, α2 =
γ

4πGβ2
. (13)

Relation (12) means that there is only one medium and we describe its perturbations. As soon
as (12) is valid equations (10) and (13) immediately give:

γβ−2a3q̇ =

∫

aγ4qdt. (14)

After differentiation the last equation gives equation describing the evolution of q-scalar:

q̈ +

(

3H + 2
α̇

α

)

q̇ −

(

β

a

)2

4q = 0. (15)

The equation (15) corresponds to the action

S[q] =
1

2

∫

α2

(

q̇2
−

(

β

a

)2

q,iq
,i

)

a3dtd3x =

=
1

2

∫

(αa)2
(

q′
2
− β2q,iq

,i
)

dηd3x.

(16)

Since the backward path from equation to a Lagrangian defines the Lagrangian to a factor
before it, we can see that (16) has the right coefficient if we look at it in some asymptotic limit,
e.g. in the limit of small scales (the sound wave frequency ω � H and sound velocity cs ' β '

1). In this approximation q ' Hυ, q̇ ' Hυ̇ and δεc ' δε. Using the relations:

δε

ε + p
=

υ̇

c2
s

,
∇υ

a
= −v, (17)

where v is hydrodynamical velocity in a sound wave, we have the following chain of equalities:

L[q] =
a3α2

2

(

q̇2
−

(

β

a

)2

q,iq
,i

)

=
γa3H2

8πGc2
s

(

υ̇2
−

c2
s

a2
(∇υ)2

)

=

=
a3

2

(

(ε + p)
υ̇2

c2
s

− (ε + p)v2

)

=
a3

2

(

c2
s

δε2

ε + p
− (ε + p)v2

)

.

(18)
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The corresponding comoving volume energy density is

E =
1

2

(

c2
s

δε2

ε + p
+ (ε + p)v2

)

. (19)

The last expression is exactly the energy density in a sound wave [6], [1].
Field approach. The Universe filled with a scalar field ϕ. The relation to the 4-velocity

is uµ = ϕ,µ/w, where w2 = ϕ,µϕ,νgµν . Below we follow the approach of [1], [9].
The Lagrangian of the scalar field can be taken in a quite arbitrary form:

L = L(ϕ,w). (20)

After that we obtain the energy-momentum tensor:

ε = nw −L, p = L, n =
∂L

∂w
, (21)

and

υ =
δϕ

ϕ̇
,

δεc

ε + p
=

q̇

c2
sH

, c−2
s =

w

n

∂2L

∂w2
. (22)

This proves that in this case cs ≡ β, and, thus, both ways, (12) and (20), of deriving
equation (15) are identical.

In order to obtain Lagrangian describing perturbations we need to expand the action for
gravitating scalar field to the second order in perturbation. The action is standard:

S[ϕ, gµν ] =

∫

(L−
1

16πG
R)(−g)1/2d4x, (23)

where R is scalar curvature.
The first step is to perturb the metric tensor: gµν → gµν+hµν and the scalar field: ϕ → ϕ + wυ.

First order terms turn to zero since the background Einstein equations are satisfied. The re-
sult of the expanding the action (23) to the second order in perturbation is as follows (total
divergency terms are omitted):

δ(2)S = −
1

64πG

∫

(hσβ;αh
σβ;α

− 2h
αβ

;σh
σ

α;β −
1

2
�h)(−g)1/2d4x−

−
1

4

∫

(
1

16πG
R −L)(h

µ
νh

ν
µ −

1

2
h

2
)(−g)1/2d4x+

+
1

2

∫

nw
[

νυh − 2uµυνh
µν

+ χ2(c−2
s − 1) + m2υ2 + 2Γυχ

]

(−g)1/2d4x,

(24)

nν = −
∂L

∂ϕ
, Γ =

w

n

∂2L

∂w∂ϕ
, m2 = −

w

n

∂2L

∂ϕ2
, χ =

δw

w
, υµ =

(wυ),µ

w
.

Here hµν = hµν −
1
2gµνh, is the so-called tensor with inverse trace: h = h

σ
σ = −h = −hσ

σ.
All operations of raising and lowering indices are performed using the background metric gµν .

The variable q is so remarkable, because after linking all the potentials through equa-
tions (8) (9) (10) and substituting the q-scalar (7) to the expansion (24) we get a very sim-
ple perturbation action (16) (totally divergent terms are excluded), where q enters as a test
massless-like field.
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4 Relation between q, ζ and Ψ

In notations of [7] the variable q [1] looks as follows:

q = Ψ + Hυ(gi), (25)

where

Ψ = A −
(B′ − C)a′

a
(26)

and
υ(gi) = υ + a(B′

− C), υ
(gi)
,i = δu

(gi)
i . (27)

The identity of (25) and (7) is obvious if we substitute (26) and (27) to (25).
Among others a variable ζ was introduced by Bardeen [3]. It is expressed through ΦH as

follows:

ζ =
2

3

H−1Φ̇H + ΦH

1 + wB
+ ΦH , wB =

p

ε
. (28)

Since (3)
1

γ
=

2

3

1

1 + wB
,

hence,

ζ =
H−1Φ̇H + ΦH

γ
+ ΦH =

1

aγ

d

dt

(

aΦH

H

)

= q. (29)

Obviously ζ coincides with q introduced in a general form by equation (7): ζ = q.

5 Conclusion

The theory of primordial cosmological perturbations can be constructed in a quite general
form. We needed the physical suggestions only at the last stage to link δpc and δεc, and, thus,
to enclose the set of equations. The hydrodynamical suggestion (12) and the field one (20) are
usually understood as two separate things, the former being referred to an existing equation of
state, and the latter associated with an inflaton field and, hence, models of inflation. However,
it appears that the suggestion (12) is equivalent to the considering of a field ϕ with a quite
common Lagrangian L(ϕ,w). In linear perturbation theory of a single gravitating medium the
two approaches coincide.

As a side result of a short overview accomplished in Sections 1 and 4, it was shown that
the variable ζ introduced in [3] is equal to the variable q introduced by Lukash [1], and equa-
tion (5.22) in [7] is equivalent to (15).
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