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Abstract

We suggest a novel picture of the quantum Universe. Its creation is described by a
density matrix which yields an ensemble of universes with the cosmological constant limited
to a bounded range Λmin ≤ Λ ≤ Λmax. The domain Λ < Λmin is ruled out by a cosmological
bootstrap requirement (the self-consistent back reaction of hot matter). The upper cutoff
results from the quantum effects of vacuum energy and the conformal anomaly mediated
by a special ghost-avoidance renormalization. The cutoff Λmax establishes a new quantum
scale which is determined by the coefficient of the topological Gauss-Bonnet term in the
conformal anomaly. This scale is realized as the upper bound — the accumulation point
of an infinite sequence of garland-type instantons which constitute the full cosmological
landscape. The dependence of the cosmological constant range on particle phenomenology
suggests a possible dynamical selection mechanism for the landscape of string vacua.

1 Introduction

The ideas of quantum cosmology [1, 2] and Euclidean quantum gravity [3] are again attracting
attention. One of the reasons is that the landscape of string vacua is too big [4] to predict either
the observed particle phenomenology or large-scale structure formation within string theory
itself. Other methods have to be invoked, at least some of them based on the cosmological
wavefunction [5, 6, 7].

This approach is based on the idea of quantum tunneling from the classically forbidden
state of the gravitational field. Semiclassically this state is described in terms of the imaginary
time, that is by means of the Euclidean spacetime, so that the corresponding amplitudes and
probabilities are weighted by the exponentiated Euclidean gravitational action, exp(−SE). The
action is calculated on the gravitational instanton – the saddle point of an underlying path
integral over Euclidean 4-geometries. This instanton gives rise to Lorentzian signature spacetime
by analytic continuation across minimal hypersurfaces. The continuation can be interpreted
either as quantum tunneling or as the creation of the Universe from “nothing”. Thus, the most
probable vacua of the landscape become weighted by the minima of SE. This might serve as a
method of selecting a vacuum from the enormously big string landscape.

An immediate difficulty with this program arises from the infrared catastrophe of small
cosmological constant Λ. The Hartle-Hawking wave function [3], which describes nucleation of
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the de Sitter Universe from the Euclidean 4-dimensional hemisphere, has the form

ΨHH ∼ exp(−SE) = exp(3π/2GΛ). (1)

This diverges for Λ → 0 because of unboundedness of the Euclidean gravitational action. Despite
some early attempts to interpret it as the origin of a zero value of Λ [8], this result remains
both controversial and anti-intuitive. It disfavors inflation, prefers creation of infinitely large
universes, and does not naturally yield the observed dark energy. Apart from the tunneling
proposals of [9] which employ an opposite sign in the exponential of (1) and thus open the
possibility for opposite conclusions [10], no convincing resolution of this problem has thus far
been suggested.

Here we show that Euclidean path integration framework naturally avoids this infrared
catastrophe. We attain this result by: i) extending the notion of Hartle-Hawking pure state to
a density matrix which describes a mixed quantum state of the Universe and ii) incorporating
the nonperturbative back reaction of hot quantum matter on the instanton background [11].
These extensions seem natural because whether the initial state of the Universe is pure or mixed
is a dynamical question rather than a postulate. We address this question below.

Σ Σ’

Figure 1: Density matrix instanton. Dashed lines depict the Lorentzian Universe nucleating at minimal
surfaces Σ and Σ′.

A density matrix ρ[ϕ,ϕ′] is represented in Euclidean quantum gravity [12] by an instanton
having two disjoint boundaries Σ and Σ′ associated with its two entries ϕ and ϕ′ (collecting both
gravity and matter observables). The instanton interpolates between these, thus establishing
mixing correlations, see Fig.1. In contrast, for the density matrix of the pure Hartle-Hawking
state the bridge between Σ and Σ′ is broken, so that the instanton is a union of two disjoint
hemispheres which smoothly close up at their poles (Fig.2) — a picture illustrating the factor-
ization of ρ̂ = |ΨHH〉〈ΨHH|.

Σ Σ’

Figure 2: Density matrix of the pure Hartle-Hawking state represented by the union of two vacuum
instantons.

The main effect that we advocate here is that thermal fluctuations destroy the Hartle-
Hawking instanton and replace it with one filled by radiation. This is already manifest in
classical theory of a spatially closed cosmology with the Euclidean FRW metric

ds2 = N2(τ) dτ2 + a2(τ) d2Ω(3) (2)

(where a(τ) is a scale factor and Ω(3) is a 3-sphere of a unit size). Namely, in the Euclidean
Friedmann equation for a(τ),

ȧ2

a2
=

1

a2
−H2 − C

a4
(3)
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(we use the gauge N = 1 and express Λ = 3H2 in terms of the Hubble constant H), the radiation
density term C/a4 prevents the half-instantons from closing and allows a to vary between two
turning points [13, 14]

a± =
1√
2H

(1 ±
√

1 − 4CH2)1/2. (4)

This forces a tubular structure on the instanton which spans at least one period of oscillation
between a±, provided the constant C (characterizing the amount of radiation) satisfies the
bound 4H2C ≤ 1.

The existence of radiation, in its turn, naturally follows from the partition function of this
state. The partition function originates from integrating out the field ϕ in the coincidence limit
ϕ′ = ϕ. This corresponds to the identification of Σ′ and Σ, so that the underlying instanton ac-
quires toroidal topology, see Fig.3. Its points are labeled by the periodically identified Euclidean
time, a period being related to the inverse temperature of the quasi-equilibrium radiation. The
back reaction of this radiation supports the instanton geometry in which this radiation exists,
and we derive the equation which makes this bootstrap consistent.

Σ ΣΣ

Σ

’

Figure 3: Calculation of the partition function represented by compactification of the instanton to a
torus with periodically identified Euclidean time.

Remarkably, when the vacuum energy and conformal anomaly are taken into account this
bootstrap yields a set of instantons – a landscape – only in the bounded range of Λ,

Λmin < Λ < Λmax. (5)

All values Λ < Λmin are completely eliminated either because of the absence of instanton
solutions or because of their infinitely large positive action. A similar situation holds for Λ >
Λmax – no instantons exist there, and the Lorentzian configurations in this overbarrier domain
(if any) are exponentially suppressed relative to those of (5). Below we derive these properties
and describe the structure of the cosmological landscape inside the domain (5).

2 The density matrix

To quantify the above picture consider the density matrix given by the Euclidean path integral
[12]

ρ[ϕ,ϕ′ ] = e
Γ

∫

D[ g, φ ] exp
(

− SE[ g, φ ]
)

, (6)

where SE[ g, φ ] is the classical action, and the integration runs over gravitational g and matter
φ fields interpolating between ϕ and ϕ′ at Σ and Σ′. The condition tr ρ̂ = 1 gives the partition
function exp(−Γ ) as a similar path integral over periodic fields on the torus with identified
boundaries Σ and Σ′, g, φ |Σ = g, φ |Σ′

e
−Γ =

∫

g, φ |
Σ

= g, φ |Σ′

D[ g, φ ] exp
(

− SE[ g, φ ]
)

. (7)
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The motivation for this definition of the density matrix and its statistical sum can be found
in [12]. Here we would only mention that this is a natural generalization of the path integral
for the no-boundary wave function of the Universe. Also, it can be regarded as a gravitational
generalization of the density matrix of the equilibrium thermodynamical ensemble at finite
temperature T = 1/β, ρ̂ = exp

(

Γ − βĤ
)

, for a system with a Hamiltonian operator Ĥ. Its
kernel in the functional coordinate representation ρ[ϕ,ϕ′] = 〈ϕ | ρ̂ |ϕ′〉, similarly to (6), is given
by the Euclidean path integral over histories φ(τ) in the imaginary time τ , interpolating between
φ(0) = ϕ′ and φ(β) = ϕ.

The density matrix (6) prescribes a particular mixed quantum state of the system. Its
semiclassical calculation yields as a saddle point the configuration of a tubular topology depicted
on Fig.1. Its Euclidean part is bounded by two minimal surfaces Σ and Σ′. The analytic
continuation across these surfaces yields the ensemble of cosmological models expanding in real
Lorentzian time, and this picture can be called as the origin of cosmological thermodynamics
via creation from “nothing”. Taking the trace of ρ̂ in the normalization condition for the density
matrix results in the identification of Σ and Σ′ and the toroidal compactification of the instanton
depicted on Fig.3. This underlies the semiclassical calculation of the statistical sum and the
corresponding Euclidean effective action (7).

The back reaction follows from decomposing [g, φ] into a minisuperspace g0(τ) =
(

a(τ), N(τ)
)

,
and the ”matter” sector which includes also inhomogeneous metric perturbations on minisu-
perspace background Φ(x) = (φ(x), ψ(x), Aµ(x), hµν(x), ...). With a relevant decomposition of
the measure D[ g, φ ] = Dg0(τ) ×DΦ(x), the integral for Γ takes the form

e
−Γ =

∫

Dg0(τ) exp
(

− Γ [g0(τ)]
)

, (8)

where Γ [g0(τ)] is the effective action of quantized matter on the background g0(τ),

exp
(

− Γ [g0(τ)]
)

=

∫

DΦ(x) exp
(

− SE[g0(τ), Φ(x)]
)

. (9)

Our approximation will be to consider it in the one-loop order,

Γ [g0] = SE[g0] + Γ1−loop[g0], (10)

and handle (8) at the tree level, which is equivalent to solving the effective equations for Γ [g0].
This incorporates the lowest order back reaction effect of quantum matter on the minisuperspace
background.

3 Conformal anomaly and the ghost-avoidance renormalization

To make calculation of Γ [ g0 ] manageable we restrict attention to conformally-invariant fields
as a source of the back reaction. For such fields one can apply the technique of the conformal
transformation [15] relating a generic FRW metric (2) rewritten in terms of the conformal time
η,

ds2 = a2(η)(dη2 + d2Ω(3)), (11)

to the metric of the Einstein static Universe of a unit size

ds̄2 = dη2 + d2Ω(3) (12)

(these metrics are denoted below as g and ḡ). The contribution of this conformal transformation
to the effective action, Γ1−loop[g]−Γ1−loop[ḡ], is determined by the coefficients of �R, the Gauss-
Bonnet invariant E = R2

µναγ − 4R2
µν + R2 and the Weyl tensor term C2

µναβ in the conformal
anomaly

gµν
δΓ1−loop

δgµν
=

1

4(4π)2
g1/2(α�R + βE + γC2

µναβ). (13)
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Specifically this contribution can be obtained by the technique of [16]. For a generic conformal
transformation relating two metrics, gµν(x) = eσ(x)ḡµν(x), it reads

Γ1−loop[g] − Γ1−loop[ḡ] =
1

2(4π)2

∫

d4xḡ1/2

{

1

2

[

γ C̄2
µναβ + β

(

Ē − 2

3
�̄R̄

)]

σ

+
β

2

[

(�̄σ)2 +
2

3
R̄ (∇̄µσ)2

]

}

− 1

2(4π)2

( α

12
+

β

18

)

∫

d4x
(

g1/2R2(g) − ḡ1/2R2(ḡ)
)

, (14)

where all barred quantities are calculated with respect to ḡµν(x).
For the conformal factor eσ = a2(τ) this expression contains higher-derivative terms ∼

ä2 which produce ghost instabilities in solutions of effective equations. However, such terms
are proportional to the coefficient α which can be put to zero by adding the following local

counterterm admissible from the viewpoint of general renormalization theory

ΓR[g] = Γ1−loop[g] +
1

2(4π)2
α

12

∫

d4x g1/2R2(g). (15)

Certainly, this additionally spoils conformal invariance of the theory which was anyway irre-
versibly broken by quantum corrections. Thus it is reasonable to fix this local renormalization
ambiguity by the additional criterion of the absence of ghosts, what we do here for sake of
consistency of the theory at the quantum level.1

The contribution ΓR[g] − ΓR[ḡ] to the renormalized action then finally reads

ΓR[ g ] − ΓR[ ḡ ] = B

∫

dτ

(

ȧ2

a
− 1

6

ȧ4

a

)

, (16)

where the parameter B is determined by the coefficient β of the topological Gauss-Bonnet term
in the conformal anomaly (13)

B =
3

4
β. (17)

4 Effective action and vacuum energy of a static Einstein in-

stanton

The static instanton with a period η0 playing the role of inverse temperature contributes
Γ1−loop[ḡ] = E0 η0 + F (η0). This is a result of a typical thermodynamical calculation, in which
the vacuum energy E0 and free energy F (η0) for bosons and fermions read as

E0 = ±
∑

ω

ω

2
, F (η0) = ±

∑

ω

ln
(

1 ∓ e−ωη0
)

, (18)

where the summation runs over field oscillators with energies ω on a unit 3-sphere.
Quartic divergence of the vacuum energy in Γ1−loop[ ḡ ] constitutes the ultraviolet diver-

gences of the full action Γ1−loop[ g ]. Under a covariant regularization the power and quartic
divergences among them are absorbed by the renormalization of the cosmological and Einstein
terms, whereas the subtraction of logarithmic divergences yields as a remnant the contribution

1This is certainly not an exhaustive solution of the ghost problem in effective equations whose higher-derivative
terms still remain in the other sectors of the theory – the graviton sector of transverse-traceless modes, in par-
ticular. These sectors, however, are not involved within the minisuperspace FRW metric, and it is suggestive to
use this finite ghost-avoidance renormalization as a simple method ultimately eradicating ghosts in the minisu-
perspace sector.
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of a conformal anomaly considered above. For conformal fields, which we consider, the logarith-
mic divergences are actually zero, because they are given by the sum of integrated Weyl-squared
and Euler number terms (γ and β terms of the conformal anomaly (13)). For a conformally flat
metric with the torus topology they are both vanishing. Therefore, the regularized one-loop
action actually does not have a typical renormalization ambiguity quadratic in the curvature
– the term of the same structure as E0 η0 in Γ1−loop[ḡ],

∫

d4xg1/2R2 ∼
∫

dτa3/a4. Thus, the
vacuum energy in an Einstein static spacetime is uniquely calculable. This was independently
confirmed by different methods [18] which give

E0 =
1

960
×







4
17
88

(19)

respectively for scalar, spinor and vector fields. It should be emphasized that this renormal-
ized Casimir energy is positive (even for the naively negative vacuum energy of a spinor field
−∑

n(ωn/2), [18]).
The ghost-avoidance renormalization (15) should be applied also to Γ1−loop[ḡ]. This only

modifies the value of the vacuum energy E0 in Γ1−loop[ḡ], because
∫

d4x ḡ1/2R̄2 = 72π2η0. Thus

ΓR[ḡ] = C0 η0 + F (η0), C0 ≡ E0 +
3α

16
. (20)

It is remarkable that for all conformal fields of low spins this modified energy reduces to the
one half of the coefficient B in the conformal part of the total effective action (16)2

C0 =
B

2
. (21)

This universal relation between C0 and B = 3β/4 can be verified by using the value of the
Casimir energy in a static universe (19) and the known anomaly coefficients [17] which for
scalar, Weyl spinor and vector fields respectively are equal:

α =
1

90
×







−1
−3
18

, β =
1

360
×







2
11
124

. (22)

The relation (21) will be very important for the formation of the upper bound of the cosmological
constant range (5).

5 Effective Friedmann equation and the cosmological bootstrap

Now we assemble together the classical part of the action, conformal contribution (16) and the
action of the static instanton (20). After rewriting the conformal time as a parametrization
invariant integral in terms of the lapse N and the scale factor a,

η0 = 2

∫ τ+

τ−

dτ N(τ)

a(τ)
, (23)

the total action takes the form

Γ [ a(τ), N(τ) ] = 2

∫ τ+

τ−

dτ
(

− aȧ2

N
−Na+NH2a3

)

+2B

∫ τ+

τ−

dτ
( ȧ2

Na
− 1

6

ȧ4

N3a

)

+B

∫ τ+

τ−

dτ N/a+ F
(

2

∫ τ+

τ−

dτ N/a
)

. (24)

2This result implies that the vacuum energy of conformal fields in a static Einstein universe can be universally
expressed in terms of the coefficients of the conformal anomaly m2

P E0 = 3(2β − α)/16.
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Here and below we work in units of the Planck mass mP =
√

3π/4G, and the integration runs
between two turning points of the periodic history a(τ) at τ± — half a period of the Euclidean
time τ .

The effective equation δΓ/δN(τ) = 0 in the gauge N = 1 has the form of the Friedmann
equation (3) modified by the quantum B-term

ȧ2

a2
+B

(

1

2

ȧ4

a4
− ȧ2

a4

)

=
1

a2
−H2 − C

a4
, (25)

in which the radiation constant C is a functional of a(τ), determined by the bootstrap equation

C = B/2 + F ′(η0), F ′(η0) ≡ dF (η0)/dη0, (26)

η0 = 2

∫ τ+

τ−

dτ/a(τ). (27)

Here F ′(η0) > 0 is the thermal energy of a hot gas of particles, which adds to their vacuum
energy B/2. Thus, the overall back reaction is mediated by the contribution of the radiation-
type energy density term and the anomalous quantum B-term. In view of Eqs. (23) and (26) the
constant C characterizing the amount of radiation nonlocally depends on the FRW background
supported by the radiation itself, and this is the mechanism of the bootstrap we are going to
analyze.3

The on-shell action Γ0 on solutions of (25) can be cast into a convenient form by expressing
the combination −a+H2a3 in (24) in terms of other pieces of the effective Friedmann equation
(25). Then, after converting the integral over τ into the integral over a between the turning
points a± the on-shell action takes the form

Γ0 = F (η0) − η0
dF (η0)

dη0
+ 4

∫ a+

a−

daȧ

a

(

B − a2 − Bȧ2

3

)

. (28)

The structure of the integral term here will be of crucial importance for the elimination of the
infrared catastrophe and formation of the bounded cosmological landscape.

6 Effect of the conformal anomaly and bootstrap: elimination

of the infrared catastrophe

Periodic instanton solutions of Eqs.(25)-(27) exist only inside the curvilinear wedge of (H 2, C)-
plane between bold segments of the upper hyperbolic boundary and the lower straight line
boundary of Fig.4,

4CH2 ≤ 1, C ≥ B −B2H2, BH2 ≤ 1/2. (29)

Below this domain the solutions are either complex and aperiodic or suppressed by infinite

positive Euclidean action. Above this domain only Lorentzian (overbarrier) configurations exist,
but they are again exponentially damped relative to instantons in (29).

These properties are based on the fact that the turning points of (25) exactly coincide with
a± of (4), but the turning point a− exists only when a2

− ≥ B, because the second term in the
equation

ȧ2 =

√

(a2 −B)2

B2
+

2H2

B
(a2

+ − a2)(a2 − a2
−) − (a2 −B)

B
, (30)

3Note that, contrary to a conventional wisdom, the vacuum energy of quantum fields in a static universe
(19) (and its renormalized version (20)) contributes not to the cosmological constant, but to the total radiation
density. This follows from the structure of the corresponding terms in the effective action discussed in Sect.4 and
is also confirmed by the radiation-type equation of state derived for E0 in [18].
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1/2B

B/2

B

k=3

k=2

H
2

C

k = 1

k=4

Figure 4: Instanton domain in the (H2, C)-plane. Garland families are shown for k = 1, 2, 3, 4. Their
sequence accumulates at the critical point (1/2B,B/2).

which is the corollary of (25), should be negative at a−. Together with the upper bound on the
amount of radiation (existence of solutions in Euclidean time), 4CH 2 ≤ 1, this gives rise to the
domain (29). Otherwise, outside of this domain a(τ) at the contraction phase becomes complex
or runs to zero which violates instanton periodicity. In the latter case a smooth Hartle-Hawking
instanton with a− = 0 forms and incorporates η0 → ∞ in view of the divergence of the integral
(27) at a(τ) → a(τ−) = 0. As a result both F (η0) ∼ − exp(−η0) and dF (η0)/dη0 vanish.
Therefore, from the bootstrap equation C = B/2, and the instanton smoothly closes at a = 0,
because in view of (30)

ȧ2 → 1 +
√

1 − 2C/B = 1, a→ 0. (31)

These Hartle-Hawking instantons arising outside of the domain (29) are ruled out by the
infinitely large positive value of their action. For their solutions the action Γ0 reduces to the last
integral term of (28) with the lower limit a(τ−) = 0. Due to the contribution of the conformal
anomaly and in view of (31) its integrand is positive at a → 0, and the integral diverges at
the lower limit to +∞. This is the mechanism of how thermal fluctuations destroy the Hartle-
Hawking pure state and make a mixed state of the Universe dynamically more preferable [11].

Moreover, inside the range (29) our bootstrap eliminates the infrared catastrophe of Λ → 0.
Indeed η0 → ∞ as H2 → 0, so that due to (26) C → B/2, but this is impossible because in
view of (29) C ≥ B at H2 = 0. Thus, instanton family never hits the C-axes of H 2 = 0 and
can only interpolate between the points on the boundaries of the domain (29). For a conformal
scalar field the numerical analysis gives such a family [11] starting from the lower boundary at

H2 ≈ 2.00, C ≈ 0.004, Γ0 ≈ −0.16, (32)

and terminating at the upper boundary at

H2 ≈ 13.0, C ≈ 0.02, Γ0 ≈ −0.09. (33)

The upper point describes the static universe filled by a hot radiation with the temperature
T = H/π

√
1 − 2BH2, whereas the lower point establishes the lower bound of the Λ-range.

The above results for a scalar field with Bscalar = 1/240 can also be obtained for other spins.
We present them for a vector field with a much bigger value of the constant Bvector = 31/120.
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The lower and upper bounds on the instanton family then read respectively as

H2 ≈ 1.06, C ≈ 0.19, Γ0 ≈ −0.28, (34)

H2 ≈ 1.23, C ≈ 0.20, Γ0 ≈ −0.23. (35)

Together with (32) they give the lower bounds on the instanton range for scalars and vectors.
Their comparison shows the tendency of decreasing Hubble scale and growing −Γ0 with the
growth of spin (or the parameter B).

In fact, the behavior of our bootstrap at B � 1 can be studied analytically [11]. It cor-
responds to the decreasing value of the conformal time, η0 ' π(4/15B)1/6, and the following
asymptotics of the effective action

Γ0 ' − 2π

3
√

15

√
B, B � 1. (36)

It is important that Γ0 stays negative (even though no infrared catastrophe exists any more)
while its absolute value grows with B. This property implies that the growing spin of quan-
tum matter (growing B = 3β/4, cf. (22)) makes the probability of the underlying instanton
higher. This will be important for suppressing the contribution of Lorentzian (overbarrier)
configurations in extended formulations of quantum gravity briefly discussed in Conclusions.

The limit of large B is very important. This limit corresponds to strong quantum corrections
mediated by a large contribution of the conformal anomaly. The higher the value of B, the
stronger it truncates the instanton domain (29) from above, H 2 < H2

max = 1/2B. This property
will be discussed in Conclusions as a possible mechanism of reducing the landscape of string
vacua.

7 Instanton garlands and a new quantum scale

The instanton family of Sect.6 does not exhaust the entire cosmological landscape. Its upper
bound follows from the existence of garlands that can be obtained by glueing together into a
torus k copies of a simple instanton [13, 19]; see Fig.5. Their formalism is the same as above
except that the conformal time (27) and the integral term of (28) should be multiplied by k.

Figure 5: The garland segment consisting of three folds of a simple instanton glued at surfaces of a
maximal scale factor.

As in the case of k = 1, garland families interpolate between the lower and upper boundaries
of (29). In particular, the numerical analysis for k = 2 yields the instanton family joining
respectively the lower and upper points in the (C,H 2)-plane

H2
(2) ≈ 45.89, C(2) ≈ 0.0034, Γ

(2)
0 ≈ −0.0113, (37)

H2
(2) ≈ 61.12, C(2) ≈ 0.0041, Γ

(2)
0 ≈ −0.0145. (38)

The garlands exist for all k, 1 ≤ k ≤ ∞, and their infinite sequence accumulates at the critical
point C = B/2, H2 = 1/2B, where these boundaries merge, see Fig.4. With k → ∞ the
length of the k-th family in the (C,H2)-plane is getting shorter and shorter and its location
closer and closer approaching the critical cusp point. The upper point of each family gives
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rise to a hot static Universe filled by radiation in the equilibrium state with the temperature
T(k) = H/kπ

√
1 − 2BH2 differing from T = T(1) by an extra 1/k-factor.

The existence of this infinite sequence follows from the behavior of a single fold of the
conformal time (27) at 2BH2 → 1. It tends to zero in this limit, so that when multiplied by k

it admits the solution of the bootstrap equation for any k → ∞ with η
(k)
0 = kη0 slowly growing

to infinity. In this limit the sequence of instanton families can be described analytically [11].

It turns out that for large k the conformal time η
(k)
0 ' ln k2, and within the 1/k2-accuracy the

upper and lower points of each family coincide and read

H2
(k) '

1

2B

(

1 − ln2 k2

2k2π2

)

, C(k) '
B

2

(

1 +
ln2 k2

2k2π2

)

, Γ
(k)
0 ' −B ln3 k2

4k2π2
. (39)

Thus, the lengths of instanton families (both in H 2 and C directions) decrease as the second

order of the 1/k2-expansion, Λ
(k)
max − Λ

(k)
min, C

(k)
max − C

(k)
min ∼ 1/k4, so that on Fig.4 they fit in

ever narrowing wedge near the critical cusp of C = B/2 = 1/4H 2. With a growing k, garlands
become more and more static and cool down to zero temperature T(k) ' 1/(

√
B ln k2) → 0.

It is remarkable that contrary to the tree-level instantons of [19] the garland action is not
additive in k, so that as k → ∞ it tends to zero and garlands do not dominate the ensemble.
Nevertheless, their existence is very important, because they generate a new quantum scale —
the upper bound of the instanton range (5). Their sequence converges to the cold, T(∞) = 0,
static instanton with the vanishing action, which realizes this scale as a maximal possible value
of the Hubble constant in the instanton landscape

H2
max ≡ H2

(∞) =
1

2B
. (40)

8 Conclusions

Thus, our Universe is created in a hot mixed state, but its evolution does not contradict the
large-scale structure formation. After nucleation from the instanton the Universe expands; its
radiation dilutes to a negligible density when Λ starts dominating and generates inflation.

The ensemble of universes belongs to a bounded Λ-range (5). Its infrared cutoff is provided
by the radiation back reaction and survives even in the classical limit as B → 0. In contrast,
the high-energy cutoff (40) is the quantum effect of vacuum energy and the conformal anomaly,
which generates a new scale in gravity theory. In view of the relation (17) this scale is determined
by the inverse of the coefficient of the topological Gauss-Bonnet term in the conformal anomaly
(13),

Λmax =
2

β
m2

P , m2
P ≡ 3π

4G
, (41)

and it tends to infinity in the classical limit β → 0. In the cosmological landscape this scale is
realized as a limiting point of the sequence of garland-type instantons.

We have considered only conformal fields, but we expect that other fields will not qualita-
tively change the picture, because on quasi-static background they do not differ significantly
from their conformal analogues. The value of the vacuum energy B/2 in (26) which gives as
a lower bound for C exactly the upper boundary of (5), C = B/2 = 1/4H 2, is critical. Non-
conformal fields are likely to break this relation. Then if C0 < B/2 all garlands survive, though
they saturate at Λmax with a finite temperature. If B > C0 > B/2, their sequence is truncated
at some k. Finally, if C0 > B the infrared catastrophe occurs again — the k = 1 family of in-
stantons hits the C-axes at C0. Which of these possibilities gets realized is a question deserving
further study.
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Another open question concerns the normalizability of our partition on the infinite set of
instantons. One might think that it is not normalizable because of infinite summation over
garland folds k. However, at least naively the total continuous measure of the instanton set

in the (H2, C)-plane is finite because
∑

k

(

Λ
(k)
max − Λ

(k)
min

)

∼ ∑

k(1/k
4) < ∞. In order to have

a definitive conclusion, though, one must take into account a zero-mode contribution to the
actual measure and also estimate preexponential factors. The latter reduce to the quantum
mechanical functional determinants of the Hessian of the effective action Γ [ a(τ), N(τ) ], which
is a nonlocal operator rather than a differential one. Their calculation is doable and will be
reported elsewhere [20].

The boundaries of (5) depend on particle phenomenology. For a single scalar field they
are given by Planckian values, Λmin ≈ 8.99m2

P , Λmax = 360m2
P and decrease as 1/N with a

growing number of fields N (in view of the simple scaling of the bootstrap C → NC, B → NB,
F (η0) → NF (η0), H

2 → H2/N). This justifies a semiclassical expansion for large N and
B. Moreover, when ascending the hierarchy of spins, this scaling reduces the domain (5) to a
narrow subplanckian range and suggests a long-sought selection mechanism for the landscape of
string vacua. Modulo the details of a relevant 4D-compactification, this mechanism might work
as follows. For B = 3β/4 growing with N and spin, cf. (22), the upper scale (41) decreases
towards the increasing phenomenology scale, and coincides with the latter at the string scale
m2

s where a positive Λ might be generated by the KKLT or KKLMMT-type mechanism [21].
Our conjecture is that at this scale our bootstrap becomes perturbatively consistent, provided
m2

P /B = m2
s � m2

P , and selects from the string landscape a small subset compatible with the
observed particle phenomenology and large-scale structure.

Our results hold within the Euclidean path integral (6) which automatically excludes Loren-
tzian configurations possibly existing above the upper boundary of (29), 4CH 2 > 1. However,
one can imagine an extended formulation of quantum gravity generalizing (6) to a wider path
integration domain. Our conclusions nevertheless remain true. Indeed, according to (36) the
effective action scales as Γ0 ∼−

√
B, B � 1, and because it is negative our landscape at the

scale ms is weighted by exp(#
√
B)=exp(#mP /ms) � 1. Therefore it strongly dominates over

Lorentzian configurations, the amplitudes of the latter being O(1) in view of their pure phase
nature. Thus, our results look robust against possible generalizations of Euclidean quantum
gravity.

This is how the cosmological landscape emerges from “nothing” and perhaps tames its string
counterpart, provided some like it hot.
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