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1 Introduction.

It is well known that CP - violation in K0 − K̄0 mixing is described by the
parameter ε̃. Within the SM, this parameter is given by box diagrams. It
depends in particular on the CKM matrix elements. On the other hand, the
experimentally measured parameters are ε and ε′. ε and ε′ enter the mea-
sured ratios of decay amplitudes of kaons into ππ states. These amplitudes
are superpositions of amplitudes A(K0 → (ππ)I) = AIe

iδI of kaon decays
into states with definite isospin I = 0, 2, AI are weak amplitudes, δI are
strong rescattering phases(see Appendix for details). The parameter ε can
be expressed as [1]:

ε = ε̃+ i
ImA0

ReA0
. (1)

Within the SM, ImA0 originates from the so-called strong penguin di-
agrams. Amplitude A2 also has an imaginary part which originates from
electro-weak penguin diagrams. That is why ImA0 >> ImA2. The ratio
ImA0

ReA0
is much smaller than ε̃ and when the fit of the CKM matrix parame-

ters is performed, one equates the experimentally measured value of |ε| and

theoretical expression for |ε̃|, neglecting the term
ImA0

ReA0
, see [2],[3]. In par-

ticular it was claimed in [4] that the contribution of
ImA0

ReA0

is ”at most a

2% correction to ε”. The aim of the present paper is to take this usually
neglected term into account.

In order to estimate the ratio
ImA0

ReA0
we exploit the fact that it enters the

expression for
ε′

ε
[1]:

ε′

ε
=

i√
2
ei(δ2−δ0) 1

ε

[
ImA2

ReA0

− w
ImA0

ReA0

]
, (2)

where w =
ReA2

ReA0
.

The ratio
ε′

ε
is experimentally measured and great amount of work was

done in order to calculate it(see [5] - [10] and refs. therein). In particular
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the quantity
ImA0

ReA0
was computed theoretically using different methods. We

shall use the results of these computations.

We shall imply the following three step procedure for estimating
ImA0

ReA0
.

At first step we neglect ImA0. Then |ε̃theor.| coincides with |εexp.|, and we
reproduce the results of [2],[3].

At second step we take into account that ImA0 6= 0, but neglect the

contribution of EW penguins in Eq.(2). Then we extract the value of
ImA0

ReA0

from experimentally measured quantity
ε′

ε
with the help of Eq.(2).

At third step we take into account the contribution of EW penguins:

ImA2 6= 0. The consequence is that one cannot extract
ImA0

ReA0
from Eq.(2).

So one has to use the results of theoretical computation of
ImA0

ReA0
.

Finally, we perform a fit of CKM matrix parameters, taking the term
ImA0

ReA0
in Eq.(1) into account and using numerical estimate of it, obtained at

step 3.

2 Difference between ε̃ and ε.

The quantities ε and ε̃ are related by Eq.(1). Taking into account that the
phase of ε̃ is approximately π

4
[1] (see also Appendix), from Eq.(1) we deduce:

|ε| =

∣∣∣∣ε̃+ i
ImA0

ReA0

∣∣∣∣ =

√
1

2
|ε̃|2 +

(
1√
2
|ε̃| + ImA0

ReA0

)2

. (3)

Thus:

|ε̃| = − 1√
2

ImA0

ReA0
+

√

|ε|2 − 1

2

(
ImA0

ReA0

)2

≈ |ε| − 1√
2

ImA0

ReA0
. (4)

The experimentally measured value is [11]:

|εexp| = 2.282(17)× 10−3. (5)
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Now we start our procedure of estimating |ε̃|. At first step we neglect
ImA0

ReA0
and obtain:

|ε̃| = |εexp| = 2.282(17)× 10−3. (6)

This formula is always used in the fits of CKM matrix parameters, see
[2],[3].

Second step: We take into account that ImA0 6= 0 but neglect ImA2.
Then Eq.(2) reduces to:

ε′

ε
≈ − i√

2
ei(δ2−δ0−

π
4
) w

|ε|
ImA0

ReA0

. (7)

Taking into account that (δ0−δ2)exp = 42±4o [12], we obtain the following

expression for
ImA0

ReA0

:

ImA0

ReA0
≈ −

√
2|ε|
w

ε′

ε
. (8)

Substituting experimental values from [11] we get:

ε′

ε
= 1.8(4) × 10−3, w = 0.045, |ε| = 2.282(17)× 10−3 =⇒

ImA0

ReA0

= −(1.3 ± 0.3) × 10−4. (9)

In this way we get the following value of |ε̃|, which is the result of the
second step:

|ε̃| = 2.37(2) × 10−3. (10)

This number coincides with the value obtained in [13], Eqs.(9.3),(9.4).
Third step: Now let us take into account the presence of EW penguins:

ImA2 6= 0. Then Eq.(2) does not allow to extract
ImA0

ReA0

from the experimen-

tal data and we need explicit theoretical result for
ImA0

ReA0

. As announced in

the Introduction, such result was obtained in the literature while calculating

theoretically
ε′

ε
.
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In order to calculate
ε′

ε
from Eq.(2) , one needs theoretical expressions

for ImA0 and ImA2 (the values of ReA0, ReA2, |ε|, δ0 − δ2 and w are well

measured experimentally). Short review of the history of
ε′

ε
calculation can

be found in [10]. The expressions for ImA0 and ImA2 are usually presented
in the following form:

ImA0 = −GF√
2
Im(VtdV

∗
ts)P

(0)(1 − ΩIB),

ImA2 = −GF√
2
Im(VtdV

∗
ts)P

(2), (11)

where

P (I) =
∑

i

yi〈Qi〉I , I = 0, 2. (12)

Here Vtd and V ∗
ts are CKM matrix elements, GF - Fermi constant, 〈Qi〉0,2

are matrix elements of 4-quark operators responsible for K → ππ decays,
yi being their Wilson coefficients, ΩIB introduces a correction due to isospin

breaking effects: ΩIB =
1

w

(ImA2)IB

ImA0
.

From (11) we have:

ImA0

ReA0

= − GF√
2ReA0

Im(VtdV
∗
ts)P

(0)(1 − ΩIB). (13)

This formula contains the CKM matrix elements (which we are going to
fit), but for the estimate of the small correction to |ε̃| we can use mean values
from [15]: Im(VtdV

∗
ts) = 0.000127. ReA0 is well measured experimentally:

ReA0 = 3.33 × 10−7GeV . Concerning P (0)(1 − ΩIB), we use data from the

calculations of
ε′

ε
done in [8], which succeed in describing the experimental

value of
ε′

ε
.

Hadronic matrix elements were evaluated in [8] using largeNc - expansion.
From Table 2 of [8] we find the following range of values (corresponding to

the quark condensate value
(
< ψ̄ψ >

) 1

3 = 0.240− 0.260GeV at µ = 2GeV ):

P (0)(1 − ΩIB) = (7.1 ± 2.1) × 10−2GeV 3.

5



Substituting this into (13) we get:
ImA0

ReA0
= (−2.23 ± 0.66) × 10−4.

This leads to the following range of values for |ε̃|:

2.39 × 10−3 < ε̃ < 2.48 × 10−3. (14)

We have taken the paper [8] as an example, and similar estimates can be

made using other results, obtained in the framework of
ε′

ε
calculation (see

[5]-[10]).
The range of values for |ε̃| presented in Eq.(14) can be written as:1

|ε̃| = (2.44 ± 0.04) × 10−3, (15)

and we use it in Section 3 to perform the fit of the parameters of CKM
matrix. As we see the value of |ε̃| is larger than that obtained at step 1 by
(5 − 10)%.

3 Fit of the parameters of CKM matrix

We use in our fit of the CKM matrix experimentally measured values of
modulus of matrix elements Vud,Vus,Vub,Vcd,Vcs, Vcb and also ε̃, ∆mBd

and
sin2β.

We assume these experimentally measured data to be normally distributed.
Also the theoretical uncertainties are treated as normally distributed. Let us
note that other people treat theoretical uncertainties in other way [2], [3].

The most precise determination of |Vud| comes from the averaging data
from nuclear and neutron β decays [15]:

|Vud| = 0.9734 ± 0.0008. (16)

From kaon semileptonic decays the element |Vus| is determined with the
better accuracy than in other methods (like hyperon semileptonic decays).
We use the recent value [15]:

|Vus| = 0.2196 ± 0.0026. (17)

From the inclusive and exclusive B-decays governed by the transition
b→ ul−ν̄l we get [15]:

1We note that a number, very close to our central value, can be extracted from [14].
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|Vub| = 0.0036 ± 0.0007. (18)

The element |Vcd| was measured in deep inelastic scattering of neutrinos
and anti-neutrinos on nucleons with charm production [15]:

|Vcd| = 0.224 ± 0.016. (19)

The best accuracy in |Vcs| comes from the measurement of the ratio of
hadronic W -decays to leptonic W -decays [15]:

|Vcs| = 0.996 ± 0.013. (20)

The averaged value of |Vcb| extracted from exclusive and inclusive semilep-
tonic B-decays including c quark is [15]:

|Vcb| = 0.041 ± 0.002. (21)

Theoretical expression for |ε̃| valid for mt > mW was first obtained in
[16]. In modern notations it looks like:

|ε̃theo| =
G2

Fm
2
WmKf

2
K

12
√

2π2∆mK

BK(ηccS(xc, xc)Im[(VcsV
∗
cd)

2] (22)

+ηttS(xt, xt)Im[(VtsV
∗
td)

2]

+2ηctS(xc, xt)Im[VcsV
∗
cdVtsV

∗
td]). (23)

Here, the S(xi, xj) are usually called the Inami-Lim functions [17]:

S(x) ≡ S(xi, xj)i=j = x

(
1

4
+

9

4(1 − x)
− 3

2(1 − x)2

)
(24)

−3

2

(
x

1 − x

)3

ln x,

S(xi, xj)i6=j = xixj

[(
1

4
+

3

2(1 − xi)
− 3

4(1 − xi)2

)
1

xi − xj

ln xi

+(xi ↔ xj) −
3

4

1

(1 − xi)(1 − xj)

]
, (25)

where xi = m2
i /m

2
W depend on the masses of c quark and t quark (mc =

1.2± 0.2 GeV[18], mt = 174.3± 5.1 GeV [18], mW = 80.42± 0.04 GeV [18]).
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The QCD corrections have been calculated to next-to-leading order: ηcc =
1.32±0.32 [19], ηtt = 0.574±0.01 [20], ηct = 0.47±0.04 [21]. The kaon decay
constant extracted from the K+ → µ+ν decay width equals: fK = 160.4±1.9
MeV [18]. The KS −KL mass difference is ∆mK = (3.491 ± 0.006) × 10−15

GeV [18]. The world average for the bag parameter BK reads: BK = 0.87±
0.06 ± 0.14quench [22]. Fermi constant GF = 1.16639(1)× 10−5GeV −2[18].

From the study of B0 − B0 oscillations the experimental value of |Vtd|
should be extracted:

∆mBd
=
G2

F

6π2
ηBmBd

m2
WS(xt)f

2
Bd
BBd

|VtdV
∗
tb|2, (26)

where ηB = 0.55±0.01 [20] is a QCD correction, mBd
= 5.2794±0.0005 GeV

[18] is the B meson mass, mW is the W boson mass, S(xt) is the Inami-Lim

function for the box diagram, xt =
m2

t

m2

W

, fBd
is the B meson decay constant,

and BBd
is the so-called bag factor. We use the following numerical value:

fBd

√
Bd = 230 ± 28 ± 28 MeV [23].

From B decays to CP eigenstates containing charmonium and neutral
K-meson sin 2β is measured with good accuracy. The average result of Belle
and BaBar is [24]:

sin 2β = 0.73 ± 0.05(stat) ± 0.035(syst). (27)

Theoretical formula for sin 2β comes from the consideration of the unitarity
triangle:

sin 2β =
2η̄(1 − ρ̄)

η̄2 + (1 − ρ̄)2
. (28)

The χ2 expression which we minimize looks like:

χ2(A, λ, ρ, η) =

(
V theo

ud − V exp
ud

σVud

)2

+

(
V theo

us − V exp
us

σVus

)2

+

(
V theo

ub − V exp
ub

σVub

)2

+

(
V theo

cd − V exp
cd

σVcd

)2

+

(
V theo

cs − V exp
cs

σVcs

)2

+

(
V theo

cb − V exp
cb

σVcb

)2

+

(
∆mtheo

Bd
− ∆mexp

Bd

σ∆m

)2

+

( |ε̃theo| − |ε̃exp|
σε̃

)2

+

(
sin2βtheo − sin2βexp

σsin2β

)2

,
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where theoretical expressions depend on the Wolfenstein parameters A, λ, ρ,
η. Expression (29) was minimized varying A, λ, ρ, η.

Performing the fit we use the value of |ε̃theo| from Eq.(15). The main
uncertainty in ε̃theo originates from that in BK and it dominates in σε̃. That
is why we use σε̃ = 0.4 × 10−3.

Here are our results:

λ = 0.2229 ± 0.0021

A = 0.83 ± 0.04

η̄ = 0.35+0.05
−0.04

ρ̄ = 0.20+0.08
−0.09

χ2/n.d.o.f. = 8.1/5 .

In Fig.1 you can see a set of bounds on the parameters ρ̄ and η̄ of the CKM
matrix. They comprise three circles, two branches of a hyperbola, and two
straight lines. Three circles originate from the Vub measurement (the green
one), the measurement of ∆mBd

(the red one) and from the lower bound
on ∆mBs

(the yellow one). The hyperbola originates from the measurement
of CP violation in the mixing of K-mesons. Straight lines come from the
measurement of CP asymmetry in B0

d(B̄
0
d) → J/ΨK decays.

4 Conclusions

Numerical difference of the quantities ε and ε̃ (which describe CP -violation
in K-mesons) was estimated in the Standard Model. Fit of CKM matrix
patameters accounted for this difference was performed.
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Figure 1: The domains at (ρ̄, η̄) plane allowed at 1σ from Vub, ∆mBd
, εK

and sin 2β measurements. 95%C.L. upper bound from the search of ∆mBs
is

shown as well.

A Basic formulas for K0-K̄0 system

It is known that states K0 and K̄0 are not mass eigenstates. Mass eigenstates
are their linear combinations:

K+ =
1√

1+ | ε̃ |2

[
K0 + K̄0

√
2

+ ε̃
K0 − K̄0

√
2

]
,

K− =
1√

1+ | ε̃ |2

[
K0 − K̄0

√
2

+ ε̃
K0 + K̄0

√
2

]
. (29)

Let’s denote matrix elements of the effective Hamiltonian between K0

and K̄0 states as follows:
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< K0 | H | K0 >=< K̄0 | H | K̄0 >= M − i

2
Γ,

< K0 | H | K̄0 >= M12 −
i

2
Γ12,

< K̄0 | H | K0 >= M∗
12 −

i

2
Γ∗

12. (30)

The eigenvalues and eigenvectors of this matrix Hamiltonian are:

λ± = M − i

2
Γ ±

√
(M12 −

i

2
Γ12)(M∗

12 −
i

2
Γ∗

12),

{
M+ = pM0 + qM̄0

M− = pM0 − qM̄0 ,
q

p
=

√
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

. (31)

Introducing quantity ε̃ according to the following definition:

q

p
=

1 − ε̃

1 + ε̃
, (32)

we come to Eq.(29).

Taking into account that Γ12 is real and
ImM12

ReM12
∼ 0.1 [13] we get the

following expression:

q

p
≈ 1 − iImM12

M12 − i
2
Γ12

. (33)

Eigenvalues of Hamiltonian may be written as λ± = (m± − i
2
Γ±)2, where

m± are masses of corresponding states and Γ± - their widths. Then denoting
K+ and K− states as KS and KL respectively, we have λ−−λ+ = 2mK(mL−
mS− i

2
(ΓL−ΓS)). On the other hand λ−−λ+ = −2

√
(M12 − i

2
Γ12)(M

∗
12 − i

2
Γ∗

12) ∼
−2(M12 − i

2
Γ12). This leads to:

q

p
≈ 1 +

iImM12/mK

(mL −mS − i
2
(ΓL − ΓS))

≈ 1 − 2ε̃. (34)
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Taking into account that ΓS << ΓL and ∆mLS ≈ ΓS/2, we obtain:

ε̃ ≈ − iImM12/2mK

(∆mLS − i
2
(ΓL − ΓS))

≈ e−i 3π
4

ImM12/2mK√
2∆mLS

. (35)

Thus calculating ImM12 within the SM we find the theoretical prediction
for ε̃. (Let us note that since ImM12 is negative, the phase of ε̃ approximately
equals π

4
).

Now we proceed to decays of kaons into pairs of pions, whose amplitudes
are well measured experimentally.

It is convenient to deal with the amplitudes of the decays into the states
with definite isospin:

A(K0 → π+π−) =
a2√
3
eiξ2eiδ2 +

a0√
3

√
2eiξ0eiδ0

A(K̄0 → π+π−) =
a2√
3
e−iξ2eiδ2 +

a0√
3

√
2e−iξ0eiδ0

A(K0 → π0π0) =

√
2

3
a2e

iξ2eiδ2 − a0√
3
eiξ0eiδ0

A(K̄0 → π0π0) =

√
2

3
a2e

−iξ2eiδ2 − a0√
3
e−iξ0eiδ0 (36)

where “2” and “0” are the values of (ππ) isospin, ξ2,0 are the (small) weak
phases which originate from CKM matrix and δ2,0 are the strong phases of
ππ-rescattering.

Experimentally measured quantities are:

η+− =
A(KL → π+π−)

A(KS → π+π−)
,

η00 =
A(KL → π0π0)

A(KS → π0π0)
. (37)

For the amplitudes of KL and KS decays into π+π− we obtain:
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A(KL → π+π−) =
1√
2

[
a2√
3
eiδ22i sin ξ2 +

a0√
3

√
2eiδ02i sin ξ0

]
+

+
ε̃√
2

[
a2√
3
eiδ22 cos ξ2 +

a0√
3

√
2eiδ02 cos ξ0

]
,

A(KS → π+π−) =
1√
2

[
a2√
3
eiδ22 cos ξ2 +

a0√
3

√
2eiδ02 cos ξ0

]
, (38)

where in the last equation we omit the terms which are proportional to the
product of two small factors, ε̃ and sin ξ0,2. For the ratio of these amplitudes
we get:

η+− =
A(KL → π+π−)

A(KS → π+π−)
= ε̃ + i

sin ξ0
cos ξ0

+
iei(δ2−δ0)

√
2

a2 cos ξ2
a0 cos ξ0

[
sin ξ2
cos ξ2

− sin ξ0
cos ξ0

]
, (39)

where we neglect the terms of the order of (a2/a0)
2 sin ξ0,2, because a2/a0 ≈

1/22.
The analogous treatment of KL,S → π0π0 decay amplitudes leads to:

η00 =
A(KL → π0π0)

A(KS → π0π0)
= ε̃+ i

sin ξ0
cos ξ0

− iei(δ2−δ0)
√

2
a2 cos ξ2
a0 cos ξ0

[
sin ξ2
cos ξ2

− sin ξ0
cos ξ0

]
. (40)

Introducing conventional quantities ε = 2
3
η+−+ 1

3
η00 and ε′ = 1

3
η+−− 1

3
η00,

we get:

ε′ =
i√
2
ei(δ2−δ0)

1

ReA0
[ImA2 − wImA0]

ε = ε̃ + i
ImA0

ReA0

, (41)

where A2,0 ≡ eiξ2,0a2,0, and w =
ReA2

ReA0

≈ a2

a0

.

Equations (41) are our starting point in the present paper; see Introduc-
tion.
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