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Abstract

We discuss hadronic light-by-light scattering contribution to the
muon anomalous magnetic moment, aµ = (gµ − 2)/2 paying particu-
lar attention to the consistent matching between the short- and the
long-distance behavior of the light-by-light scattering amplitude. Ac-
counting for the short-distance constraints leads to approximately 50%
increase in the central value of aLbL

µ , compared to existing estimates.

1 Introduction

In this talk I discuss theory of hadronic effects in the muon anomalous mag-
netic moment. The presentation is based on works [1, 2, 3] . The outline of
the talk is 1

• Decomposition of the muon anomalous magnetic moment

• Hadrons in polarization operator

• Hadrons in light-by-light

• Summary

Let me start from reminding a definition of the magnetic moment via the
energy in the external magnetic field ~B,

E = −~µ ~B , ~µ = gµ
e~

2mµc
~s . (1)

1 I omit discussion on hadronic effects in the electroweak corrections.
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From the Dirac equation gµ = 2. Deviations are due to radiative corrections,

gµ = 2
(

1 +
α

2π
+ . . .

)

, Schwinger ’48. (2)

The anomalous magnetic moment of muon is measured with a very high
precision in the E821 experiment at BNL [4, 5],

aexp
µ+ =

gµ+ − 2

2
= 116 592 030(80) × 10−11 ’02,

(3)

aexp
µ−

=
gµ− − 2

2
= 116 592 140(80) × 10−11 ’04.

Assuming CPT invariance the average is also given

aexp
µ = 116 592 080(60) × 10−11 . (4)

These experimental results are presented together with the theoretical pre-
dictions in Fig. 1.

The Standard Model prediction for aµ can be represented as a sum

aSM
µ = aQED

µ + ahad
µ + aEW

µ . (5)

The QED part involving only leptons and photons is the main one [6],

aQED
µ = 116 584 720.7(1.2) × 10−11 . (6)

This accounts for one-, two-, three- and four-loop contributions, i.e., up to
the α4 terms.

Next is the hadronic contribution.

ahad
µ = ahad,LO

µ + ahad,HO
µ + aLbL

µ . (7)

The leading order hadronic contribution is diagrammatically represented in
Fig. 2 by the quark loop while the the diagram in Fig. 3 present an example
of the higher order hadronic contributions,

ahad,LO
µ =

{

6963(62)(36)×10−11 e+e− based,

7110(50)(8)(28)×10−11 τ based.
(8)

The estimate [7] for the higher order term is

ah,HO
µ =−100(6)×10−11 , (9)

while for the light-by-light contribution [7]

aLbL
µ = 86(35) × 10−11 . (10)
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Figure 1: Experimental values and theoretical predictions. The green bars are
due to the shift in the hadronic light-by-light contribution.

2 Hadrons in polarization operator

In theory

ahad,LO
µ = I =

(α mµ

3π

)2
∫

∞

4m2
π

ds

s2
K(s)R(s) (11)

where K(s) is the known function, K(s) → 1 at s � m2
µ and R(s) is the

cross section of e+e− annihilation into hadrons in units of σ(e+e− → µ+µ−).
In the integration over s two regions can be single out. The threshold region
s ∼ 4m2

π where

R(s) ≈
1

4

(

1 −
4m2

π

s

)3/2

, (12)

and the resonance region s ∼ m2
ρ where by quark-hadron duality

R(s) ≈ Nc

∑

Q2
q . (13)
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Figure 2: Lowest order hadronic contri-
bution represented by a quark loop

Figure 3: An example of higher order
hadronic contribution

In Fig. 4 the three-loop diagram is
shown for the hadronic light-by-light
contribution. This diagram includes
the quark loop for the light-by-light
scattering.

The leading order hadronic contri-
bution ahad,LO

µ is defined by experi-
mental data from two sources; e+e−

annihilation into hadrons and hadron
production in τ decays [7].

γ

γγγ

q q

µ µ

Figure 4: Light-by-light scattering con-
tribution

The threshold region gives

aµ(threshold) ∼ c1

(α

π

)2 m2
µ

m2
π

(14)

i.e. a parametrical enhancement in the chiral limit. Numerically, however,
this is not a leading contribution,

ahad,LO
µ (4m2

π ≤ s ≤ m2
ρ/2) ≈ 400×10−11 (15)

Compare with the ρ peak,

ahad,LO
µ (ρ) =

m2
µ Γ(ρ → e+e−)

π m3
ρ

≈ 5000×10−11 (16)
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This contribution is enhanced by Nc ,

aµ(ρ) ∼ c2

(α

π

)2

Nc

m2
µ

m2
ρ

(17)

What is a lesson from this exercise? We see that the large Nc enhancement
prevails over chiral one.

3 Light-by-light

The γ∗γ∗ → γ∗γ amplitude is not accessible experimentally, a challenge for
theorists. Parametrically the LbL contribution to aµ can be presented in the
form

aLbL
µ ∼

(α

π

)3
[

c1

m2
µ

m2
π

+ c2Nc

m2
µ

m2
ρ

]

(18)

similar to ahad,LO
µ above. The first, chirally enhanced term, is due to the loops

of charged pion presented in Fig. 5a, the second, Nc-enhanced, term is due
to exchanges of π0 and heavier resonances, Fig. 5b. The chirally enhanced

π0, a 1
π+

a b

Figure 5: Hadronic contributions to the light-
by-light scattering: (a) charged pion loop,
(b) exchange of neutral pion and other res-
onances.

Figure 6: The π0 pole part of
light-by-light contribution to
g − 2

contribution does not result in large number, it is actually rather small [8],

aLbL
µ (pion box) ≈ −4×10−11 (19)

(a larger number −19×10−11 was obtained in [9]) similarly to the hadronic
polarization case above. The π0 pole part of LbL, see Fig. 6, contains besides
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Nc the chiral enhancement in the logarithmic form [10],

aLbL
µ (π0) =

(α

π

)3

Nc

m2
µ Nc

48π2F 2
π

ln2 mρ

mπ
+ . . . . (20)

The π0 pole part was studied in Refs. [8, 9, 11]. It was shown there that
the logarithmically enhanced term is not sufficient, the subleading terms are
equally important. Numerically [10]

aLbL
µ (π0) = 56×10−11 , Knecht, Nyffeler. (21)

Using constraints from the Operator Product Expansion (OPE) we will
show that it is underestimated value. The difference can be formulated as
an absence of form factor suppression in γγ∗π0 vertex containing the soft
photon (external field).

4 OPE constraints

The photons in the LbL amplitude are described by εµ
i (qi), i = 1, 2, 3, 4,

∑

qi = 0 where ε4 represents the external magnetic field f γδ = qγ
4 εδ

4 − qδ
4ε

γ
4 ,

q4 → 0. The LbL amplitude is

M = α2Nc Tr [Q̂4]A = α2Nc Tr [Q̂4]Aµ1µ2µ3γδε
µ1

1 εµ2

2 εµ3

3 f γδ (22)

= −e3

∫

d4x d4y e−iq1x−iq2y εµ1

1 εµ2

2 εµ3

3 〈0|T {jµ1
(x) jµ2

(y) jµ3
(0)} |γ〉 ,

where jµ is the electromagnetic current, jµ = q̄ Q̂γµq, q = {u, d, s}. The
amplitude depends on three Lorentz invariants: q2

1 , q
2
2, q

2
3.

Consider the Euclidian range q2
1 ≈ q2

2 � q2
3. We can use OPE for the

currents that carry large momenta q1, q2,

i

∫

d4x d4y e−iq1x−iq2y T {jµ1
(x), jµ2

(y)} =

∫

d4z e−i(q1+q2)z
2i

q̂2
εµ1µ2δρ q̂δjρ

5 (z) + · · · . (23)

Here q̂ = (q1 − q2)/2 and the axial current jρ
5 = q̄ Q̂2γργ5 q is the linear com-

bination of the isovector j
(3)
5ρ = q̄ λ3γ

ργ5 q, the hypercharge j
(8)
5ρ = q̄ λ8γ

ργ5 q
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and the singlet j
(0)
5ρ = q̄ γργ5 q currents,

j5ρ =
∑

a=3,8,0

Tr [λaQ̂
2]

Tr [λ2
a]

j
(a)
5ρ (24)

This OPE is illustrated in Fig. 7,

Figure 7: The operator product expansion of two hard vector currents

The triangle amplitude

T (a)
µ3ρ = i 〈0|

∫

d4z eiq3zT{j
(a)
5ρ (z) jµ3

(0)}|γ〉 (25)

is expressed kinematically via two scalar amplitudes

T (a)
µ3ρ = −

ie NcTr [λaQ̂
2]

4π2

{

w
(a)
L (q2

3) q3ρq
σ
3 f̃σµ3

+

+w
(a)
T (q2

3)
(

−q2
3 f̃µ3ρ+q3µ3

qσ
3 f̃σρ−q3ρq

σ
3 f̃σµ3

)}

. (26)

The longitudinal function wL is associated with the pseudoscalar mesons ex-
change, while the transversal function wT represents the pseudovector mesons
exchange.

In perturbation theory for massless quarks

w
(a)
L (q2) = 2w

(a)
T (q2) = −

2

q2
. (27)

Nonvanishing wL is the signature of the axial Adler–Bell–Jackiw anomaly
[12]. Moreover, for nonsinglet w

(3,8)
L it is the exact QCD result, no pertur-

bative (Adler–Bardeen theorem [13]) as well as nonperturbative (’t Hooft
consistency condition [14]) corrections. So the pole behavior is preserved all
way down to small q2 where the pole is associated with Goldstone mesons
π0, η. Comparing the pole residue we get the famous ABJ result

gπγγ =
NcTr [λ3Q̂

2]
.16π2 Fπ (28)
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There exists [2] the nonrenormalization theorem for wT as well but only in
respect to perturbative corrections. Higher term in the OPE does not vanish
in this case, they are responsible for shift of the pole 1/q2 → 1/(q2 − m2).

Combining we get

Aµ1µ2µ3γδf
γδ =

8

q̂2
εµ1µ2δρq̂

δ
∑

a=3,8,0

W (a)
{

w
(a)
L (q2

3) qρ
3q

σ
3 f̃σµ3

+ w
(a)
T (q2

3)
(

−q2
3 f̃

ρ
µ3

+q3µ3
qσ
3 f̃ ρ

σ−qρ
3q

σ
3 f̃σµ3

) }

+ · · · , (29)

where the weights W (3) = 1/4, W (8) = 1/12, W (0) = 2/3.

5 The model

Now we can formulate the model for the LbL amplitude which interpolates
between pseudoscalar and pseudovector poles and the correct asymptotic
behavior at large momenta,

A = APS + APV + permutations,

APS =
∑

a=3,8,0

W (a)φ
(a)
L (q2

1 , q
2
2) w

(a)
L (q2

3) {f2f̃1}{f̃f3},

APV =
∑

a=3,8,0

W (a)φ
(a)
T (q2

1, q
2
2) w

(a)
T (q2

3)
(

{q2f2f̃1f̃f3q3}

+{q1f1f̃2f̃ f3q3}+
q2
1 + q2

2

4
{f2f̃1}{f̃f3}

)

. (30)

For π0

w
(3)
L (q2) =

2

q2 + m2
π

,

φ3
L(q2

1 , q
2
2) =

Nc

4π2F 2
π

Fπγ∗γ∗(q2
1, q

2
2)

=
q2
1q

2
2(q

2
1 + q2

2) − h2q
2
1q

2
2 + h5(q

2
1 + q2

2) + (NcM
4
1 M4

2 /4π2F 2
π )

(q2
1 + M2

1 )(q2
1 + M2

2 )(q2
2 + M2

1 )(q2
2 + M2

2 )
. (31)

Following the form factor analysis by Knecht and Nyffeler [10] M1 = 769 MeV,
F = 6.93 GeV4. They did not fix h2 and put h2 = 0 for the central value.
Actually, it is fixed by the old QCD sum rule analysis [15], h2 ≈ −10 GeV2.
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It results in

aπ0

µ = 76.5 × 10−11 , aPS
µ = 114(10) × 10−11 . (32)

A similar analysis for pseudovector exchange gives

aPV
µ = 20.5(5) × 10−11 , (33)

and finally
aLbL

µ = 134(25) × 10−11 . (34)

6 Summary

The hadronic light-by-light scattering contribution to aµ is shown to be larger
than previous estimates. We cannot claim any significant reduction in the
theoretical uncertainty although believe that the shift ≈ 50 × 10−11 in the
central value is real,

aLbL
µ = 134(25) × 10−11 . (35)

In terms of comparison with the experimental value it means that

aexp
µ − ath

µ =

{

(220 ± 100) × 10−11 (2.2 σ), e+e− based,
(76 ± 100) × 10−11 (0.8 σ), τ based.

(36)

Update: The recent data from KLOE at DAΦNE [16] (they use the radiative
return to get a lower energy) are consistent the CMD-2 data in Novosibirsk.
Although the discrepancy with τ data remains unexplained the authors of
Ref. [7] made the new analysis putting aside the τ data but including the
KLEO data,

aexp
µ − ath

µ = (236 ± 92) × 10−11 (2.6 σ). (37)
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