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Abstract

Starting with the Dirac-Pauli equation for a massive neutrino in
an external magnetic field, we propose a new quantum equation for
a neutrino in the presence of background matter. On this basis the
quantum theory of a neutrino moving in the background matter is
developed: i) for the particular case of matter with constant density
the exact solutions of this new equation are found and classified over
the neutrino spin states, ii) the corresponding energy spectrum is also
derived accounting for the neutrino helicity. Using these solutions we
develop the quantum theory of the spin light of neutrino (SLν) in mat-
ter. The SLν radiation rate and total power are derived for different
linear and circular polarizations of the emitted photons. Within the
solid base of the developed quantum approach, the existence of the
neutrino self-polarization effect in matter is also shown.

Recently in a series of our papers [1] we have developed the quasi-classical
approach to the massive neutrino spin evolution in the presence of external
electromagnetic fields and background matter. In particular, we have shown
that the well known Bargmann-Michel-Telegdi (BMT) equation [2] of the
electrodynamics can be generalized for the case of a neutrino moving in
the background matter and under the influence of external electromagnetic
fields. The proposed new equation for a neutrino, which simultaneously ac-
counts for the electromagnetic interaction with external fields and also for
the weak interaction with particles of the background matter, was obtained
from the BMT equation by the following substitution of the electromagnetic
field tensor Fµν = (E,B):

Fµν → Eµν = Fµν +Gµν , (1)
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where the tensor Gµν = (−P,M) accounts for the neutrino interactions
with particles of the environment. The substitution (1) implies that in the
presence of matter the magnetic B and electric E fields are shifted by the
vectors M and P, respectively:

B → B + M, E → E−P. (2)

We have also shown how to construct the tensor Gµν with the use of the
neutrino speed, matter speed, and matter polarization four-vectors.

Within the developed quasi-classical approach to the neutrino spin evo-
lution we have also considered [3–5] a new type of electromagnetic radiation
by a neutrino moving in the background matter and/or gravitational fields
which we have named the ”spin light of neutrino” (SLν). The SLν orig-
inates, however, from the quantum spin flip transitions and for sure it is
important to revise the calculations of the rate and total power of the SLν
in matter using the quantum theory. Note that within the quantum theory
the radiation emitted by a neutrino moving in a magnetic field was also
considered in [6].

In this paper we should like to present a reasonable step forward, which
we have made recently, in the study of the neutrino interaction in the back-
ground matter and external fields. On the basis of the generalization of
the Dirac-Pauli equation of the quantum electrodynamics we propose a new
quantum equation for the neutrino wave function with effects of the neutrino-
matter interaction being accounted for. This new equation establishes the
basis for the quantum treatment of a neutrino moving in the presence of
the background matter. In the limit of the constant matter density, we get
the exact solutions of this equation, classify them over the neutrino helicity
states and determine the energy spectrum, which depends on the helicity.
Then with the use of these wave functions we develop the quantum theory
of the SLν and calculate the rate and power of the spin-light radiation in
matter accounting for the emitted photons polarization. The existence of the
neutrino-spin self-polarization effect [3,5] in matter is also confirmed within
the developed quantum approach 1.

To derive the quantum equation for the neutrino wave function in the
background matter we start with the well-known Dirac-Pauli equation for
a neutral fermion with non-zero magnetic moment. For a massive neutrino
moving in an electromagnetic field Fµν this equation is given by

(

iγµ∂µ −m− µ

2
σµνFµν

)

Ψ(x) = 0, (3)

1The neutrino-spin self-polarization effect in the magnetic field was discussed in [6].
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where m and µ are the neutrino mass and magnetic moment2, σµν =
i/2
(

γµγν − γνγµ
)

. It worth to be noted here that Eq.(3) can be obtained
in the linear approximation over the electromagnetic field from the Dirac-
Schwinger equation, which in the case of the neutrino takes the following
form [6]:

(iγµ∂µ −m)Ψ(x) =

∫

MF (x′, x)Ψ(x′)dx′, (4)

whereMF (x′, x) is the neutrino mass operator in the presence of the external
electromagnetic field.

For the case of the external magnetic filed, the Hamiltonian form of the
equation (3) reads

i
∂

∂t
Ψ(r, t) = ĤFΨ(r, t), (5)

where
ĤF = α̂p + β̂m+ V̂F , V̂F = −µβ̂Σ̂B, (6)

and B is the magnetic field vector. We use the Pauli-Dirac representation
of the Dirac matrices α̂ and β̂, in which

α̂ =

(

0 σ̂

σ̂ 0

)

= γ0γ, β̂ =

(

1 0
0 −1

)

= γ0, Σ̂ =

(

σ̂ 0
0 σ̂

)

, (7)

where σ̂ = (σ1, σ2, σ3) and σ denotes the Pauli matrixes.
Now let us consider the case of a neutrino moving in matter without

any electromagnetic field in the background. The quantum equation for the
neutrino wave function can be obtained from (3) with application of the
substitution (1) which now becomes

Fµν → Gµν . (8)

Thus, we get the quantum equation for the neutrino wave function in the
presence of the background matter in the form

(

iγµ∂µ −m− µ

2
σµνGµν

)

Ψ(x) = 0, (9)

that can be regarded as the generalized Dirac-Pauli equation. The general-
ization of the neutrino quantum equation for the case when an electromag-
netic field is present, in addition to the background matter, is obvious.

2For the recent studies of a massive neutrino electromagnetic properties, including
discussion on the neutrino magnetic moment, see Ref. [7]
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The detailed discussion on the evaluation of the tensor Gµν is given in [1].
We consider here, for simplicity, the case of the unpolarized matter composed
of the only one type of fermions of a constant density. For a background of
only electrons we get

Gµν = γρ(1)n









0 0 0 0
0 0 −β3 β2

0 β3 0 −β1

0 −β2 β1 0









, (10)

γ = (1 − β2)−1/2,

ρ(1) =
G̃F

2
√

2µ
, G̃F = GF (1 + 4 sin2 θW ),

where β = (β1, β2, β3) is the neutrino three-dimensional speed, n denotes
the number density of the background electrons. From (10) and the two
equations, (3) and (9), it is possible to see that the term γρ(1)nβ in Eq.(9)
plays the role of the magnetic field B in Eq.(3). Therefore, the Hamiltonian
form of (9) is

i
∂

∂t
Ψ(r, t) = ĤGΨ(r, t), (11)

where
ĤG = α̂p + β̂m+ V̂G, (12)

and

V̂G = −µρ
(1)n

m
β̂Σp, (13)

here p is the neutrino momentum. From (13) it is just straightforward that
the potential energy in matter depends on the neutrino helicity.

The form of the Hamiltonian (12) ensures that the operators of the
momentum, p̂, and helicity, Σp/p, are integrals of motion. That is why for
the stationary states we can write

Ψ(r, t) = e−i(Et−pr)u(p, E), u(p, E) =

(

ϕ
χ

)

, (14)

where u(p, E) is independent on the coordinates and time and can be ex-
pressed in terms of the two-component spinors ϕ and χ. Substituting (14)
into Eq.(11), we get the two equations

(σp)χ−
(

E −m+ α(σp)
)

ϕ = 0, (15)

(σp)ϕ−
(

E −m+ α(σp)
)

χ = 0.
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Suppose that ϕ and χ satisfy the following equations,

(σp)ϕ = spϕ, (σp)χ = spχ, (16)

where s = ±1 specify the two neutrino helicity states. Upon the condition
that the set of Eqs.(15) has a non-trivial solution, we arrive to the energy
spectrum of a neutrino moving in the background matter:

E =
√

p2(1 + α2) +m2 − 2αmps, α =
µρ(1)

m
n =

1

2
√

2
G̃F

n

m
. (17)

It is important that the the neutrino energy in the background matter de-
pends on the state of the neutrino longitudinal polarization (helicity), i.e.
the left-handed and right-handed neutrinos with equal momentum have dif-
ferent energies.

The obtained expression (17) for the neutrino energy can be transformed
to the form

E =

√

p2 +m2
(

1 − s
αp

m

)2
. (18)

It is easy to see that the energy spectrum of a neutrino in vacuum, which
is derived on the basis of the Dirac equation, is modified in the presence of
matter by the formal shift of the neutrino mass

m→ m
(

1 − s
αp

m

)

. (19)

The procedure, similar to one used for the derivation of the solution of
the Dirac equation in vacuum, can be adopted for the case of the neutrino
moving in matter. We apply this procedure to the equation (11) and arrive
to the final form of the wave function of a neutrino moving in the background
matter:

Ψp,s(r, t) =
e−i(Et−pr)

2L
3

2



















√

1 + m−sαp
E

√

1 + sp3

p

s
√

1 + m−sαp
E

√

1 − sp3

p eiδ

s
√

1 − m−sαp
E

√

1 + sp3

p
√

1 − m−sαp
E

√

1 − sp3

p eiδ



















, (20)

where L is the normalization length and δ = arctan py/px. In the limit of
vanishing density of matter, when α → 0, the wave function of Eq.(20)
transforms to the vacuum solution of the Dirac equation.
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The proposed new quantum equation (9) for a neutrino moving in the
background matter and the obtained exact solutions (20) establish a basis
for a new method in the study of different processes with participation of
neutrinos in the presence of matter. As an example, we should like to use the
new method in the study of the spin light of neutrino (SLν) in matter and to
develop the quantum theory of this effect. Within the quantum approach, the
corresponding Feynman diagram of the SLν in matter is the standard one-
photon emission diagram with the initial and final neutrino states described
by the ”broad lines” that account for the neutrino interaction with matter.
From the usual neutrino magnetic moment interaction, it follows that the
amplitude of the transition from the neutrino initial state ψi to the final state
ψf , accompanied by the emission of a photon with a momentum kµ = (ω,k)
and a polarization e∗, can be written in the form

Sfi = −µ
√

4π

∫

d4xψ̄f (x)(Γ̂e∗)
eikx

√
2ωL3

ψi(x), (21)

where ψi and ψf are the corresponding exact solutions of the equation (9)
given by (20), and

Γ̂ = iω
{

γ0
[

Σ× κ

]

+ iγ0γ5Σ
}

. (22)

Here κ = k
ω is the unit vector pointing in the direction of the emitted photon

propagation.
The integration in (23) with respect to time yields

Sfi = −µ
√

2π

ωL3
2πδ(Ef −Ei + ω)

∫

d3xψ̄f (r)(Γ̂e∗)eikrψi(r), (23)

where the delta-function stands for the energy conservation. Performing the
integrations over the spatial co-ordinates, we can recover the delta-functions
for the three components of the momentum. Finally, we get the law of energy-
momentum conservation for the considered process,

Ei = Ef + ω, pi = pf + κ. (24)

Let us suppose that the weak interaction of the neutrino with the elec-
trons of the background is indeed weak. Here we should like to note that
Eq.(9) is derived under the assumption that the matter term is small. This
condition is similar to the condition of smallness of the electromagnetic term
in the Dirac-Pauli equation (3) in the electrodynamics. In this case, we can
expand the energy (18) over α pm

E2

0

� 1 and in the liner approximation get

E ≈ E0 − smα
p

E0
, (25)
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where E0 =
√

p2 +m2. Then from the law of the energy conservation (24)
we get for the energy of the emitted photon

ω = Ei0 −Ef0
+ ∆, ∆ = αm

p

E0
(sf − si), (26)

where the indexes i and f label the corresponding quantities of the neu-
trino initial and final states. From Eqs.(26) and the law of the momentum
conservation, in the linear approximation over α, we obtain

ω = (sf − si)αm
β

1 − β cos θ
, (27)

where θ is the angle between κ and the direction of the neutrino speed β.
From the above consideration it follows that the only possibility for the

SLν to appear is provided in the case when the neutrino initial and final
states are characterized by si = −1 and sf = +1, respectively. Thus we
conclude, on the basis of the quantum treatment of the SLν in matter, that
in this process the left-handed neutrino is converted to the right-handed
neutrino (see also [3]) and the emitted photon energy is given by

ω =
1√
2
G̃Fn

β

1 − β cos θ
. (28)

Note that the photon energy depends on the angle θ and also on the value
of the neutrino speed β. In the case of β ≈ 1 and θ → 0 we confirm the
estimation for the emitted photon energy given in [3].

Now let us derive the SLν rate and radiation power using the quantum
theory. In the case of a neutrino moving along the OZ-axes, the solution
(20) for the states with s = −1 and s = +1 can be rewritten in the form,

Ψp,s=−1(r, t) =
e−i(Et−pr)

√
2L

3

2













0

−
√

1 + m+αp
E

0
√

1 − m+αp
E













, (29)

and

Ψp,s=+1(r, t) =
e−i(Et−pr)

√
2L

3

2













√

1 + m−αp
E

0
√

1 − m−αp
E

0













. (30)
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We now put these wave functions into Eq.(23) and calculate the spin light
transition rate in the linear approximation over the parameter α pm

E2

0

. Finally,

for the rate we get

ΓSL = 8µ5(nρ(1)β)3
∫

S sin θ

(1 − β cos θ)4
dθ, (31)

where
S = (cos θ − β)2 + (1 − β cos θ)2. (32)

The corresponding expression for the radiation power is

ISL = 16µ6(nρ(1)β)4
∫

S sin θ

(1 − β cos θ)5
dθ. (33)

Performing the integrations in Eq.(31) over the angle θ, we obtain for the
rate

ΓSL =
2
√

2

3
µ2G̃3

Fn
3β3γ2. (34)

This result exceeds the value of the neutrino spin light rate derived in [3] by
a factor of two because here the neutrinos in the initial state are totally left-
handed polarized, whereas in [3] the case of initially unpolarized neutrinos
(i.e., an equal mixture of the left- and right-handed neutrinos) is considered.
From Eq.(33) we get for the total radiation power,

ISL =
2

3
µ2G̃4

Fn
4β4γ4. (35)

Using Eq.(23) we can also derive the SLν rate and total power in matter
accounting for the photon polarization. If j is the unit vector pointing in the
direction of the neutrino propagation, then we can introduce the to vectors

e1 =
[κ × j]

√

1 − (κj)2
, e2 =

κ(κj) − j
√

1 − (κj)2
, (36)

which specify the two different linear polarizations of the emitted photon.
For these vectors it is easy to get

e1 = {sinφ,− cos φ}, e2 = {cosφ cos θ, sinφ cos θ,− sin θ}. (37)

Note that the vector e1 is orthogonal to j. Decomposing the neutrino transi-
tion amplitude (23) in contributions from the two linearly polarized photons,
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one can obtain the power of the process with radiation of the polarized pho-
tons. For the two linear polarizations determined by the vectors e1 and e2,
we get

I
(1),(2)
SL = 16µ6(nρ(1)β)4

∫

sin θ

(1 − β cos θ)5

(

S(1)

S(2)

)

dθ, (38)

where
S(1) = (cos θ − β)2, S(2) = (1 − β cos θ)2. (39)

Finally, performing the integration over the angle θ we get the power of
the radiation of the linearly polarized photons

(

I
(1)
SL

I
(2)
SL

)

=

(

1
3
1

)

1

2
µ2G̃4

Fn
4β4γ4. (40)

It is also possible to decompose the radiation power for the circular
polarized photons. We introduce the two unit vectors for description of the
photons with the two opposite circular polarizations,

el =
1√
2
(e1 ± ie2) (41)

where l = ±1 correspond to the right and left photon circular polarizations,
respectively. Then for the power of the radiation of the circular-polarized
photons we get

I
(l)
SL = 16µ6(nρ(1)β)4

∫

sin θ

(1 − β cos θ)5
S(l)dθ, (42)

where

S(l) =
1

2
(S(1) + S(2)) − l

√

S(1)S(2). (43)

Integration over the angle θ in (42) yields

I
(l)
SL =

1

3
µ2G̃4

Fn
4β4γ4

(

1 − 1

2
lβ
)

. (44)

In conclusion, we have shown how the Dirac-Pauli equation for a mas-
sive neutrino in an external electromagnetic field can be modified in order to
account for the effect of the neutrino-matter interaction. On the basis of the
new equation the quantum treatment of a neutrino moving in the presence
of the background matter has been realized. In the limit of the constant
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density of matter, we have obtained the exact solutions of this new equa-
tion for different neutrino helicity states and also determined the neutrino
energy spectrum, which depends on the helicity. Then we have developed
the quantum theory of the SLν in matter and calculated its rate and power
accounting for the emitted photons polarization. We have also confirmed,
within the solid base of the developed quantum approach, the existence of
the neutrino-self polarization effect [3, 5] in the process of the spin light ra-
diation of a neutrino moving in the background matter. The SLν radiation
and the corresponding neutrino self-polarization effect, due to the significant
dependence on the matter density, are expected to be important in different
astrophysical dense media and in the early Universe.
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